|
import json |
|
import os |
|
|
|
import pandas as pd |
|
|
|
from src.display.formatting import has_no_nan_values, make_clickable_model |
|
from src.leaderboard.read_evals import get_raw_eval_results |
|
|
|
|
|
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: |
|
"""Creates a dataframe from all the individual experiment results""" |
|
print(f"Getting raw eval results from {results_path} and {requests_path}") |
|
raw_data = get_raw_eval_results(results_path, requests_path) |
|
print(f"Got {len(raw_data)} raw eval results") |
|
|
|
if not raw_data: |
|
print("No raw data found!") |
|
return pd.DataFrame(columns=cols) |
|
|
|
all_data_json = [v.to_dict() for v in raw_data] |
|
print(f"Converted {len(all_data_json)} results to dict") |
|
print(f"Data before DataFrame creation: {all_data_json}") |
|
|
|
df = pd.DataFrame.from_records(all_data_json) |
|
print(f"Created DataFrame with columns: {df.columns.tolist()}") |
|
print(f"DataFrame before filtering:\n{df}") |
|
|
|
|
|
for col in benchmark_cols: |
|
if col not in df.columns: |
|
print(f"Missing required column: {col}") |
|
df[col] = None |
|
|
|
|
|
df = df[has_no_nan_values(df, benchmark_cols)] |
|
print(f"DataFrame after benchmark filtering:\n{df}") |
|
|
|
df = df.sort_values(by="Security Score ⬆️", ascending=False) |
|
print(f"DataFrame after sorting:\n{df}") |
|
|
|
df = df[cols].round(decimals=2) |
|
print(f"DataFrame after column selection:\n{df}") |
|
|
|
print(f"Final DataFrame has {len(df)} rows") |
|
return df |
|
|
|
|
|
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: |
|
"""Creates the different dataframes for the evaluation queues requestes""" |
|
print(f"Looking for eval requests in {save_path}") |
|
all_evals = [] |
|
|
|
|
|
for root, _, files in os.walk(save_path): |
|
for file in files: |
|
if file.endswith('.json'): |
|
file_path = os.path.join(root, file) |
|
print(f"Reading JSON file: {file_path}") |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
|
|
formatted_data = { |
|
"model": make_clickable_model(data["model"]), |
|
"revision": data.get("revision", "main"), |
|
"private": data.get("private", False), |
|
"precision": data.get("precision", ""), |
|
"weight_type": data.get("weight_type", ""), |
|
"status": data.get("status", "") |
|
} |
|
|
|
all_evals.append(formatted_data) |
|
|
|
print(f"Found {len(all_evals)} total eval requests") |
|
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] |
|
running_list = [e for e in all_evals if e["status"] == "RUNNING"] |
|
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] |
|
|
|
print(f"Pending: {len(pending_list)}, Running: {len(running_list)}, Finished: {len(finished_list)}") |
|
|
|
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) |
|
df_running = pd.DataFrame.from_records(running_list, columns=cols) |
|
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) |
|
return df_finished[cols], df_running[cols], df_pending[cols] |
|
|