File size: 9,039 Bytes
99b815f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ab30f9
99b815f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f56293
99b815f
 
7a3d0ce
99b815f
7a3d0ce
 
 
99b815f
8f56293
 
 
 
 
 
7a3d0ce
 
 
 
99b815f
 
 
7a3d0ce
99b815f
7a3d0ce
 
99b815f
 
7a3d0ce
 
99b815f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.leaderboard.security_eval import check_safetensors

# Skip HuggingFace downloads for local testing
print("Creating leaderboard DataFrame...")
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
print(f"LEADERBOARD_DF shape: {LEADERBOARD_DF.shape}")
print(f"LEADERBOARD_DF columns: {LEADERBOARD_DF.columns.tolist()}")
print(f"LEADERBOARD_DF data:\n{LEADERBOARD_DF}")

print("\nGetting evaluation queue DataFrames...")
(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe):
    print(f"Initializing leaderboard with DataFrame shape: {dataframe.shape}")
    
    # Get all fields from AutoEvalColumn
    auto_eval_fields = fields(AutoEvalColumn)
    print(f"AutoEvalColumn fields: {[f.name for f in auto_eval_fields]}")
    
    # Create a mapping from display names to field names
    field_mapping = {f.name: f for f in auto_eval_fields}
    print(f"Field mapping: {field_mapping}")
    
    if dataframe is None or len(dataframe) == 0:
        # Create an empty DataFrame with the correct columns
        import pandas as pd
        dataframe = pd.DataFrame(columns=[f.name for f in auto_eval_fields])
        print("Created empty DataFrame with correct columns")
    
    # Verify all required columns are present
    for col in dataframe.columns:
        if col not in field_mapping:
            print(f"Warning: Column {col} not found in field mapping")
    
    return Leaderboard(
        value=dataframe,
        datatype=["str" if col not in field_mapping else field_mapping[col].type for col in dataframe.columns],
        select_columns=SelectColumns(
            default_selection=[col for col in dataframe.columns if col in field_mapping and field_mapping[col].displayed_by_default],
            cant_deselect=[col for col in dataframe.columns if col in field_mapping and field_mapping[col].never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=["Model", "Hub License"],
        hide_columns=[col for col in dataframe.columns if col in field_mapping and field_mapping[col].hidden],
        filter_columns=[
            ColumnFilter("Type", type="checkboxgroup", label="Model types"),
            ColumnFilter("Weight Format", type="checkboxgroup", label="Weight Format"),
            ColumnFilter("Precision", type="checkboxgroup", label="Precision"),
            ColumnFilter(
                "#Params (B)",
                type="slider",
                min=0.01,
                max=150,
                label="Select the number of parameters (B)",
            ),
            ColumnFilter(
                "Available on Hub", type="boolean", label="Deleted/incomplete", default=True
            ),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ”’ Security Leaderboard", elem_id="security-leaderboard-tab", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("πŸ“ About", elem_id="about-tab", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit Model", elem_id="submit-tab", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# πŸ”’ Submit Your Model for Security Evaluation", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name (organization/model-name)",
                        placeholder="huggingface/model-name"
                    )
                    revision_name_textbox = gr.Textbox(
                        label="Revision commit",
                        placeholder="main"
                    )
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weight Format",
                        multiselect=False,
                        value="Safetensors",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(
                        label="Base model (for delta or adapter weights)",
                        placeholder="Optional: base model path"
                    )

            with gr.Row():
                gr.Markdown(
                    """
                    ### Security Requirements:
                    1. Model weights must be in safetensors format
                    2. Model card must include security considerations
                    3. Model will be evaluated on secure coding capabilities
                    """,
                    elem_classes="markdown-text"
                )

            submit_button = gr.Button("Submit for Security Evaluation")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

demo.queue(default_concurrency_limit=40).launch()