File size: 15,317 Bytes
50373cb 1ab30f9 50373cb 5b0b7d5 8f56293 dbdbe46 5b0b7d5 c6141e9 50373cb dbdbe46 50373cb 1ab30f9 50373cb 1ab30f9 50373cb dbdbe46 c6141e9 dbdbe46 c6141e9 dbdbe46 50373cb dbdbe46 50373cb dbdbe46 50373cb dbdbe46 50373cb 5b0b7d5 50373cb 2144d6f 50373cb 5b0b7d5 dbdbe46 5b0b7d5 dbdbe46 c6141e9 dbdbe46 5b0b7d5 dbdbe46 c6141e9 dbdbe46 c6141e9 5b0b7d5 c6141e9 dbdbe46 c6141e9 1264ff3 c6141e9 dbdbe46 5b0b7d5 1264ff3 5b0b7d5 c6141e9 5b0b7d5 c6141e9 5b0b7d5 c6141e9 5b0b7d5 1264ff3 366074b dbdbe46 8f56293 dbdbe46 5b0b7d5 c6141e9 5b0b7d5 8f56293 5403e9d 8f56293 50373cb 1264ff3 dbdbe46 c6141e9 5b0b7d5 c6141e9 5b0b7d5 dbdbe46 c6141e9 5b0b7d5 c6141e9 5c1ec97 2144d6f c6141e9 1264ff3 c6141e9 5c1ec97 dbdbe46 5b0b7d5 5c1ec97 dbdbe46 fcb44f9 efd3c08 683aa2a 2144d6f 47d9606 683aa2a dbdbe46 50373cb dbdbe46 50373cb dbdbe46 50373cb 47d9606 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download, HfApi
import pandas as pd
import os
import logging
import json
from datetime import datetime
from src.core.evaluation import EvaluationManager, EvaluationRequest
from src.core.queue_manager import QueueManager
from src.logging_config import setup_logging
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import (
API,
CACHE_PATH,
EVAL_REQUESTS_PATH,
EVAL_RESULTS_PATH,
QUEUE_REPO,
REPO_ID,
RESULTS_REPO,
TOKEN
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
# Setup logging
setup_logging(log_dir="logs")
logger = logging.getLogger('web')
# Initialize managers
evaluation_manager = EvaluationManager(
results_dir=EVAL_RESULTS_PATH,
backup_dir=os.path.join(CACHE_PATH, "eval-backups")
)
queue_manager = QueueManager(
queue_dir=os.path.join(CACHE_PATH, "eval-queue")
)
def restart_space():
"""Restart the Hugging Face space."""
logger.info("Restarting space")
API.restart_space(repo_id=REPO_ID)
def initialize_space():
"""Initialize the space by downloading required data."""
logger.info("Initializing space")
try:
logger.info(f"Downloading queue data from {QUEUE_REPO}")
snapshot_download(
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN
)
except Exception as e:
logger.error(f"Failed to download queue data: {str(e)}")
restart_space()
try:
logger.info(f"Downloading results data from {RESULTS_REPO}")
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN
)
except Exception as e:
logger.error(f"Failed to download results data: {str(e)}")
restart_space()
# Initialize space
initialize_space()
LEADERBOARD_DF = get_leaderboard_df(COLS, BENCHMARK_COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_COLS)
# Function to update the leaderboard
def update_leaderboard():
global LEADERBOARD_DF
LEADERBOARD_DF = get_leaderboard_df(COLS, BENCHMARK_COLS)
return LEADERBOARD_DF
def process_evaluation_queue():
"""Process pending evaluation requests."""
logger.info("Processing evaluation queue")
while True:
request = queue_manager.get_next_request()
if not request:
logger.info("No more requests in the queue")
break
try:
logger.info(f"Processing request for model: {request.model_id}")
# Convert queue request to evaluation request
eval_request = EvaluationRequest(
model_id=request.model_id,
revision=request.revision,
precision="float16", # Default precision
weight_type="Safetensors",
submitted_time=request.timestamp
)
# Run evaluation
results = evaluation_manager.run_evaluation(eval_request)
logger.info(f"Evaluation complete for {request.model_id}")
# Save results to stacklok/results
save_results_to_repo(results, RESULTS_REPO)
# Mark request as complete
queue_manager.mark_complete(request.request_id)
# Update leaderboard
update_leaderboard()
except Exception as e:
logger.error(f"Evaluation failed for {request.model_id}: {str(e)}", exc_info=True)
# Move failed request back to pending queue
queue_manager.add_request(request.model_id, request.revision, priority=2)
queue_manager.mark_complete(request.request_id)
from huggingface_hub import HfApi
def save_results_to_repo(results, repo):
"""Save evaluation results to the specified repository."""
try:
api = HfApi()
model_id = results['model_id'].replace('/', '_')
filename = f"{model_id}_results.json"
# Convert results to JSON string
json_results = json.dumps(results, indent=2)
# Save results to the repository
api.upload_file(
path_or_fileobj=json_results.encode(),
path_in_repo=filename,
repo_id=repo,
repo_type="dataset",
token=TOKEN
)
logger.info(f"Saved results for {results['model_id']} to {repo}/{filename}")
except Exception as e:
logger.error(f"Failed to save results to {repo}: {str(e)}", exc_info=True)
def update_leaderboard():
"""Update the leaderboard with latest evaluation results."""
global LEADERBOARD_DF
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
return LEADERBOARD_DF
def init_leaderboard(df):
"""Initialize the leaderboard with the given DataFrame."""
if df is None or df.empty:
df = pd.DataFrame(columns=COLS)
logger.info("Creating empty leaderboard - no evaluations completed yet")
else:
logger.info(f"Initializing leaderboard with {len(df)} rows")
# Ensure "Security Score β¬οΈ" and "Safetensors" columns are present
if "Security Score β¬οΈ" not in df.columns:
logger.warning("Security Score column not found in DataFrame")
df["Security Score β¬οΈ"] = None
if "Safetensors" not in df.columns:
logger.warning("Safetensors column not found in DataFrame")
df["Safetensors"] = None
# Sort by Security Score if available
if "Security Score β¬οΈ" in df.columns:
df = df.sort_values(by="Security Score β¬οΈ", ascending=False)
logger.info("Sorted leaderboard by Security Score")
# Ensure all required columns are present
for col in COLS:
if col not in df.columns:
logger.warning(f"Column {col} not found in DataFrame, adding with None values")
df[col] = None
# Select only the columns we want to display
df = df[COLS]
logger.info(f"Final leaderboard columns: {df.columns.tolist()}")
logger.debug(f"Leaderboard data:\n{df}")
# Create the leaderboard
return gr.Dataframe(
headers=COLS,
datatype=["str"] * len(COLS),
row_count=10,
col_count=(len(COLS), "fixed"),
value=df,
wrap=True,
column_widths=[50] + [None] * (len(COLS) - 1),
type="pandas",
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π Security Leaderboard", elem_id="security-leaderboard-tab", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("π About", elem_id="about-tab", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit Model", elem_id="submit-tab", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# π Submit Your Model for Security Evaluation", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name (organization/model-name)",
placeholder="huggingface/model-name"
)
revision_name_textbox = gr.Textbox(
label="Revision commit",
placeholder="main"
)
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weight Format",
multiselect=False,
value="Safetensors",
interactive=True,
)
base_model_name_textbox = gr.Textbox(
label="Base model (for delta or adapter weights)",
placeholder="Optional: base model path"
)
with gr.Row():
gr.Markdown(
"""
### Security Requirements:
1. Model weights must be in safetensors format
2. Model card must include security considerations
3. Model will be evaluated on secure coding capabilities
""",
elem_classes="markdown-text"
)
submit_button = gr.Button("Submit for Security Evaluation")
submission_result = gr.Markdown()
def handle_submission(model, base_model, revision, precision, weight_type, model_type):
"""Handle new model submission."""
try:
logger.info(f"New submission received for {model}")
# Prepare request data
request_data = {
"model_id": model,
"base_model": base_model,
"revision": revision if revision else "main",
"precision": precision,
"weight_type": weight_type,
"model_type": model_type,
"status": "PENDING",
"timestamp": datetime.now().isoformat()
}
# Add to queue in QUEUE_REPO
api = HfApi()
filename = f"{model.replace('/', '_')}_request.json"
api.upload_file(
path_or_fileobj=json.dumps(request_data).encode(),
path_in_repo=filename,
repo_id=QUEUE_REPO,
repo_type="dataset",
token=TOKEN
)
logger.info(f"Added request for {model} to {QUEUE_REPO}")
# Get updated pending evaluations
_, _, pending_eval_queue_df = get_evaluation_queue_df(EVAL_COLS)
# Start processing queue in background
scheduler.add_job(process_evaluation_queue, id='process_queue_job', replace_existing=True)
return gr.Markdown("Submission successful! Your model has been added to the evaluation queue. Please check the 'Pending Evaluation Queue' for status updates."), pending_eval_queue_df
except Exception as e:
logger.error(f"Submission failed: {str(e)}", exc_info=True)
return gr.Markdown(f"Error: {str(e)}"), None
submit_button.click(
handle_submission,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
# Update evaluation tables periodically
def update_evaluation_tables():
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_COLS)
return finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
# Setup schedulers
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.add_job(process_evaluation_queue, "interval", seconds=300) # Process queue every 5 minutes
scheduler.start()
logger.info("Application startup complete")
demo.queue(default_concurrency_limit=40).launch()
# Update evaluation tables every 60 seconds
demo.load(update_evaluation_tables, outputs=[finished_eval_table, running_eval_table, pending_eval_table], every=60)
|