kantord's picture
Create local setup (#1)
431363c verified
raw
history blame
11.2 kB
import logging
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.executors.pool import ThreadPoolExecutor
from apscheduler.jobstores.memory import MemoryJobStore
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
# Configure Logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize Scheduler
scheduler = BackgroundScheduler(
jobstores={'default': MemoryJobStore()},
executors={'default': ThreadPoolExecutor(10)},
job_defaults={'coalesce': False, 'max_instances': 1},
)
scheduler.start()
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
logger.info(f"Downloading evaluation requests from {QUEUE_REPO} to {EVAL_REQUESTS_PATH}")
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
logger.info(f"Downloading evaluation results from {RESULTS_REPO} to {EVAL_RESULTS_PATH}")
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def start_evaluation(row):
logger.info(f"Starting evaluation for row ID {row.get('id')}")
# Implementation to start evaluation
pass
def monitor_evaluation(row):
logger.info(f"Monitoring evaluation for row ID {row.get('id')}")
# Implementation to monitor evaluation
pass
def initiate_new_evaluation(row):
logger.info(f"Initiating new evaluation for row ID {row.get('id')}")
# Implementation to initiate new evaluation
pass
def finalize_evaluation(row):
logger.info(f"Finalizing evaluation for row ID {row.get('id')}")
# Implementation to finalize evaluation
pass
def process_evaluation_queue():
"""Process pending evaluation requests."""
logger.info("Starting processing of evaluation queue")
try:
# Retrieve evaluation queues
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# Assign statuses to each DataFrame
finished_eval_queue_df['status'] = 'FINISHED'
running_eval_queue_df['status'] = 'RUNNING'
pending_eval_queue_df['status'] = 'PENDING'
# Handle PENDING_NEW_EVAL
if 'needs_new_eval' in pending_eval_queue_df.columns:
pending_new_eval_df = pending_eval_queue_df[pending_eval_queue_df['needs_new_eval']].copy()
pending_new_eval_df['status'] = 'PENDING_NEW_EVAL'
pending_eval_queue_df = pending_eval_queue_df[~pending_eval_queue_df['needs_new_eval']]
else:
pending_new_eval_df = pd.DataFrame()
# Combine all queues into a single DataFrame
full_queue_df = pd.concat([
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
pending_new_eval_df
], ignore_index=True)
logger.debug(f"Combined queue has {len(full_queue_df)} entries")
# Process each entry based on status
for _, row in full_queue_df.iterrows():
status = row['status']
logger.debug(f"Processing row ID {row.get('id')} with status {status}")
if status == 'PENDING':
start_evaluation(row)
elif status == 'RUNNING':
monitor_evaluation(row)
elif status == 'PENDING_NEW_EVAL':
initiate_new_evaluation(row)
elif status == 'FINISHED':
finalize_evaluation(row)
else:
logger.warning(f"Unknown status '{status}' for row ID {row.get('id')}")
logger.info("Completed processing of evaluation queue")
return finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
except Exception as e:
logger.error(f"Error processing evaluation queue: {e}", exc_info=True)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"πŸ”„ Running Evaluation Queue",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
# Process the evaluation queue every 2 minutes
timer = gr.Timer(120, active=True)
timer.tick(process_evaluation_queue, inputs=[], outputs=[finished_eval_table, running_eval_table, pending_eval_table])
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
demo.queue(default_concurrency_limit=40).launch()