Delete app.py.v1
Browse files
app.py.v1
DELETED
@@ -1,100 +0,0 @@
|
|
1 |
-
import spaces
|
2 |
-
from pip._internal import main
|
3 |
-
|
4 |
-
main(['install', 'timm==1.0.8'])
|
5 |
-
import timm
|
6 |
-
|
7 |
-
print("installed", timm.__version__)
|
8 |
-
import gradio as gr
|
9 |
-
from inference import sam_preprocess, beit3_preprocess
|
10 |
-
from model.evf_sam import EvfSamModel
|
11 |
-
from transformers import AutoTokenizer
|
12 |
-
import torch
|
13 |
-
import numpy as np
|
14 |
-
import sys
|
15 |
-
import os
|
16 |
-
|
17 |
-
version = "YxZhang/evf-sam"
|
18 |
-
model_type = "ori"
|
19 |
-
|
20 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
21 |
-
version,
|
22 |
-
padding_side="right",
|
23 |
-
use_fast=False,
|
24 |
-
)
|
25 |
-
|
26 |
-
kwargs = {
|
27 |
-
"torch_dtype": torch.half,
|
28 |
-
}
|
29 |
-
model = EvfSamModel.from_pretrained(version, low_cpu_mem_usage=True,
|
30 |
-
**kwargs).eval()
|
31 |
-
model.to('cuda')
|
32 |
-
|
33 |
-
|
34 |
-
@spaces.GPU
|
35 |
-
@torch.no_grad()
|
36 |
-
def pred(image_np, prompt):
|
37 |
-
original_size_list = [image_np.shape[:2]]
|
38 |
-
|
39 |
-
image_beit = beit3_preprocess(image_np, 224).to(dtype=model.dtype,
|
40 |
-
device=model.device)
|
41 |
-
|
42 |
-
image_sam, resize_shape = sam_preprocess(image_np, model_type=model_type)
|
43 |
-
image_sam = image_sam.to(dtype=model.dtype, device=model.device)
|
44 |
-
|
45 |
-
input_ids = tokenizer(
|
46 |
-
prompt, return_tensors="pt")["input_ids"].to(device=model.device)
|
47 |
-
|
48 |
-
# infer
|
49 |
-
pred_mask = model.inference(
|
50 |
-
image_sam.unsqueeze(0),
|
51 |
-
image_beit.unsqueeze(0),
|
52 |
-
input_ids,
|
53 |
-
resize_list=[resize_shape],
|
54 |
-
original_size_list=original_size_list,
|
55 |
-
)
|
56 |
-
pred_mask = pred_mask.detach().cpu().numpy()[0]
|
57 |
-
pred_mask = pred_mask > 0
|
58 |
-
|
59 |
-
visualization = image_np.copy()
|
60 |
-
visualization[pred_mask] = (image_np * 0.5 +
|
61 |
-
pred_mask[:, :, None].astype(np.uint8) *
|
62 |
-
np.array([50, 120, 220]) * 0.5)[pred_mask]
|
63 |
-
|
64 |
-
return visualization / 255.0, pred_mask.astype(np.float16)
|
65 |
-
|
66 |
-
|
67 |
-
desc = """
|
68 |
-
<div><h3>EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3>
|
69 |
-
<p>EVF-SAM extends SAM's capabilities with text-prompted segmentation, achieving high accuracy in Referring Expression Segmentation.</p></div>
|
70 |
-
<div style='display:flex; gap: 0.25rem; align-items: center'><a href="https://arxiv.org/abs/2406.20076"><img src="https://img.shields.io/badge/arXiv-Paper-red"></a><a href="https://github.com/hustvl/EVF-SAM"><img src="https://img.shields.io/badge/GitHub-Code-blue"></a></div>
|
71 |
-
"""
|
72 |
-
|
73 |
-
# desc_title_str = '<div align ="center"><img src="assets/logo.jpg" width="20%"><h3> Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3></div>'
|
74 |
-
# desc_link_str = '[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2406.20076)'
|
75 |
-
|
76 |
-
demo = gr.Interface(
|
77 |
-
fn=pred,
|
78 |
-
inputs=[
|
79 |
-
gr.components.Image(type="numpy", label="Image", image_mode="RGB"),
|
80 |
-
gr.components.Textbox(
|
81 |
-
label="Prompt",
|
82 |
-
info=
|
83 |
-
"Use a phrase or sentence to describe the object you want to segment. Currently we only support English"
|
84 |
-
)
|
85 |
-
],
|
86 |
-
outputs=[
|
87 |
-
gr.components.Image(type="numpy", label="visulization"),
|
88 |
-
gr.components.Image(type="numpy", label="mask")
|
89 |
-
],
|
90 |
-
examples=[["assets/zebra.jpg", "zebra top left"],
|
91 |
-
["assets/bus.jpg", "bus going to south common"],
|
92 |
-
[
|
93 |
-
"assets/carrots.jpg",
|
94 |
-
"3carrots in center with ice and greenn leaves"
|
95 |
-
]],
|
96 |
-
title="📷 EVF-SAM: Referring Expression Segmentation",
|
97 |
-
description=desc,
|
98 |
-
allow_flagging="never")
|
99 |
-
# demo.launch()
|
100 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|