ssws3 commited on
Commit
e19a4ed
·
verified ·
1 Parent(s): f6a9757

Delete app.py.v1

Browse files
Files changed (1) hide show
  1. app.py.v1 +0 -100
app.py.v1 DELETED
@@ -1,100 +0,0 @@
1
- import spaces
2
- from pip._internal import main
3
-
4
- main(['install', 'timm==1.0.8'])
5
- import timm
6
-
7
- print("installed", timm.__version__)
8
- import gradio as gr
9
- from inference import sam_preprocess, beit3_preprocess
10
- from model.evf_sam import EvfSamModel
11
- from transformers import AutoTokenizer
12
- import torch
13
- import numpy as np
14
- import sys
15
- import os
16
-
17
- version = "YxZhang/evf-sam"
18
- model_type = "ori"
19
-
20
- tokenizer = AutoTokenizer.from_pretrained(
21
- version,
22
- padding_side="right",
23
- use_fast=False,
24
- )
25
-
26
- kwargs = {
27
- "torch_dtype": torch.half,
28
- }
29
- model = EvfSamModel.from_pretrained(version, low_cpu_mem_usage=True,
30
- **kwargs).eval()
31
- model.to('cuda')
32
-
33
-
34
- @spaces.GPU
35
- @torch.no_grad()
36
- def pred(image_np, prompt):
37
- original_size_list = [image_np.shape[:2]]
38
-
39
- image_beit = beit3_preprocess(image_np, 224).to(dtype=model.dtype,
40
- device=model.device)
41
-
42
- image_sam, resize_shape = sam_preprocess(image_np, model_type=model_type)
43
- image_sam = image_sam.to(dtype=model.dtype, device=model.device)
44
-
45
- input_ids = tokenizer(
46
- prompt, return_tensors="pt")["input_ids"].to(device=model.device)
47
-
48
- # infer
49
- pred_mask = model.inference(
50
- image_sam.unsqueeze(0),
51
- image_beit.unsqueeze(0),
52
- input_ids,
53
- resize_list=[resize_shape],
54
- original_size_list=original_size_list,
55
- )
56
- pred_mask = pred_mask.detach().cpu().numpy()[0]
57
- pred_mask = pred_mask > 0
58
-
59
- visualization = image_np.copy()
60
- visualization[pred_mask] = (image_np * 0.5 +
61
- pred_mask[:, :, None].astype(np.uint8) *
62
- np.array([50, 120, 220]) * 0.5)[pred_mask]
63
-
64
- return visualization / 255.0, pred_mask.astype(np.float16)
65
-
66
-
67
- desc = """
68
- <div><h3>EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3>
69
- <p>EVF-SAM extends SAM's capabilities with text-prompted segmentation, achieving high accuracy in Referring Expression Segmentation.</p></div>
70
- <div style='display:flex; gap: 0.25rem; align-items: center'><a href="https://arxiv.org/abs/2406.20076"><img src="https://img.shields.io/badge/arXiv-Paper-red"></a><a href="https://github.com/hustvl/EVF-SAM"><img src="https://img.shields.io/badge/GitHub-Code-blue"></a></div>
71
- """
72
-
73
- # desc_title_str = '<div align ="center"><img src="assets/logo.jpg" width="20%"><h3> Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3></div>'
74
- # desc_link_str = '[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2406.20076)'
75
-
76
- demo = gr.Interface(
77
- fn=pred,
78
- inputs=[
79
- gr.components.Image(type="numpy", label="Image", image_mode="RGB"),
80
- gr.components.Textbox(
81
- label="Prompt",
82
- info=
83
- "Use a phrase or sentence to describe the object you want to segment. Currently we only support English"
84
- )
85
- ],
86
- outputs=[
87
- gr.components.Image(type="numpy", label="visulization"),
88
- gr.components.Image(type="numpy", label="mask")
89
- ],
90
- examples=[["assets/zebra.jpg", "zebra top left"],
91
- ["assets/bus.jpg", "bus going to south common"],
92
- [
93
- "assets/carrots.jpg",
94
- "3carrots in center with ice and greenn leaves"
95
- ]],
96
- title="📷 EVF-SAM: Referring Expression Segmentation",
97
- description=desc,
98
- allow_flagging="never")
99
- # demo.launch()
100
- demo.launch()