|
import glob |
|
import json |
|
import os |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
|
|
def get_mask_from_json(json_path, img): |
|
try: |
|
with open(json_path, "r") as r: |
|
anno = json.loads(r.read()) |
|
except: |
|
with open(json_path, "r", encoding="cp1252") as r: |
|
anno = json.loads(r.read()) |
|
|
|
inform = anno["shapes"] |
|
comments = anno["text"] |
|
is_sentence = anno["is_sentence"] |
|
|
|
height, width = img.shape[:2] |
|
|
|
|
|
area_list = [] |
|
valid_poly_list = [] |
|
for i in inform: |
|
label_id = i["label"] |
|
points = i["points"] |
|
if "flag" == label_id.lower(): |
|
continue |
|
|
|
tmp_mask = np.zeros((height, width), dtype=np.uint8) |
|
cv2.polylines(tmp_mask, np.array([points], dtype=np.int32), True, 1, 1) |
|
cv2.fillPoly(tmp_mask, np.array([points], dtype=np.int32), 1) |
|
tmp_area = tmp_mask.sum() |
|
|
|
area_list.append(tmp_area) |
|
valid_poly_list.append(i) |
|
|
|
|
|
sort_index = np.argsort(area_list)[::-1].astype(np.int32) |
|
sort_index = list(sort_index) |
|
sort_inform = [] |
|
for s_idx in sort_index: |
|
sort_inform.append(valid_poly_list[s_idx]) |
|
|
|
mask = np.zeros((height, width), dtype=np.uint8) |
|
for i in sort_inform: |
|
label_id = i["label"] |
|
points = i["points"] |
|
|
|
if "ignore" in label_id.lower(): |
|
label_value = 255 |
|
else: |
|
label_value = 1 |
|
|
|
cv2.polylines(mask, np.array([points], dtype=np.int32), True, label_value, 1) |
|
cv2.fillPoly(mask, np.array([points], dtype=np.int32), label_value) |
|
|
|
return mask, comments, is_sentence |
|
|
|
|
|
if __name__ == "__main__": |
|
data_dir = "./train" |
|
vis_dir = "./vis" |
|
|
|
if not os.path.exists(vis_dir): |
|
os.makedirs(vis_dir) |
|
|
|
json_path_list = sorted(glob.glob(data_dir + "/*.json")) |
|
for json_path in json_path_list: |
|
img_path = json_path.replace(".json", ".jpg") |
|
img = cv2.imread(img_path)[:, :, ::-1] |
|
|
|
|
|
mask, comments, is_sentence = get_mask_from_json(json_path, img) |
|
|
|
|
|
valid_mask = (mask == 1).astype(np.float32)[:, :, None] |
|
ignore_mask = (mask == 255).astype(np.float32)[:, :, None] |
|
vis_img = img * (1 - valid_mask) * (1 - ignore_mask) + ( |
|
(np.array([0, 255, 0]) * 0.6 + img * 0.4) * valid_mask |
|
+ (np.array([255, 0, 0]) * 0.6 + img * 0.4) * ignore_mask |
|
) |
|
vis_img = np.concatenate([img, vis_img], 1) |
|
vis_path = os.path.join( |
|
vis_dir, json_path.split("/")[-1].replace(".json", ".jpg") |
|
) |
|
cv2.imwrite(vis_path, vis_img[:, :, ::-1]) |
|
print("Visualization has been saved to: ", vis_path) |
|
|