|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from PIL.Image import Image |
|
|
|
from model.segment_anything_2.sam2.modeling.sam2_base import SAM2Base |
|
|
|
from model.segment_anything_2.sam2.utils.transforms import SAM2Transforms |
|
|
|
|
|
class SAM2ImagePredictor: |
|
def __init__( |
|
self, |
|
sam_model: SAM2Base, |
|
mask_threshold=0.0, |
|
max_hole_area=0.0, |
|
max_sprinkle_area=0.0, |
|
) -> None: |
|
""" |
|
Uses SAM-2 to calculate the image embedding for an image, and then |
|
allow repeated, efficient mask prediction given prompts. |
|
|
|
Arguments: |
|
sam_model (Sam-2): The model to use for mask prediction. |
|
mask_threshold (float): The threshold to use when converting mask logits |
|
to binary masks. Masks are thresholded at 0 by default. |
|
fill_hole_area (int): If fill_hole_area > 0, we fill small holes in up to |
|
the maximum area of fill_hole_area in low_res_masks. |
|
""" |
|
super().__init__() |
|
self.model = sam_model |
|
self._transforms = SAM2Transforms( |
|
resolution=self.model.image_size, |
|
mask_threshold=mask_threshold, |
|
max_hole_area=max_hole_area, |
|
max_sprinkle_area=max_sprinkle_area, |
|
) |
|
|
|
|
|
self._is_image_set = False |
|
self._features = None |
|
self._orig_hw = None |
|
|
|
self._is_batch = False |
|
|
|
|
|
self.mask_threshold = mask_threshold |
|
|
|
|
|
self._bb_feat_sizes = [ |
|
(256, 256), |
|
(128, 128), |
|
(64, 64), |
|
] |
|
|
|
@torch.no_grad() |
|
def set_image( |
|
self, |
|
image: Union[np.ndarray, Image], |
|
) -> None: |
|
""" |
|
Calculates the image embeddings for the provided image, allowing |
|
masks to be predicted with the 'predict' method. |
|
|
|
Arguments: |
|
image (np.ndarray or PIL Image): The input image to embed in RGB format. The image should be in HWC format if np.ndarray, or WHC format if PIL Image |
|
with pixel values in [0, 255]. |
|
image_format (str): The color format of the image, in ['RGB', 'BGR']. |
|
""" |
|
self.reset_predictor() |
|
|
|
if isinstance(image, np.ndarray): |
|
logging.info("For numpy array image, we assume (HxWxC) format") |
|
self._orig_hw = [image.shape[:2]] |
|
elif isinstance(image, Image): |
|
w, h = image.size |
|
self._orig_hw = [(h, w)] |
|
else: |
|
raise NotImplementedError("Image format not supported") |
|
|
|
input_image = self._transforms(image) |
|
input_image = input_image[None, ...].to(self.device) |
|
|
|
assert ( |
|
len(input_image.shape) == 4 and input_image.shape[1] == 3 |
|
), f"input_image must be of size 1x3xHxW, got {input_image.shape}" |
|
logging.info("Computing image embeddings for the provided image...") |
|
backbone_out = self.model.forward_image(input_image) |
|
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out) |
|
|
|
if self.model.directly_add_no_mem_embed: |
|
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed |
|
|
|
feats = [ |
|
feat.permute(1, 2, 0).view(1, -1, *feat_size) |
|
for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1]) |
|
][::-1] |
|
self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]} |
|
self._is_image_set = True |
|
logging.info("Image embeddings computed.") |
|
|
|
@torch.no_grad() |
|
def set_image_batch( |
|
self, |
|
image_list: List[Union[np.ndarray]], |
|
) -> None: |
|
""" |
|
Calculates the image embeddings for the provided image batch, allowing |
|
masks to be predicted with the 'predict_batch' method. |
|
|
|
Arguments: |
|
image_list (List[np.ndarray]): The input images to embed in RGB format. The image should be in HWC format if np.ndarray |
|
with pixel values in [0, 255]. |
|
""" |
|
self.reset_predictor() |
|
assert isinstance(image_list, list) |
|
self._orig_hw = [] |
|
for image in image_list: |
|
assert isinstance( |
|
image, np.ndarray |
|
), "Images are expected to be an np.ndarray in RGB format, and of shape HWC" |
|
self._orig_hw.append(image.shape[:2]) |
|
|
|
img_batch = self._transforms.forward_batch(image_list) |
|
img_batch = img_batch.to(self.device) |
|
batch_size = img_batch.shape[0] |
|
assert ( |
|
len(img_batch.shape) == 4 and img_batch.shape[1] == 3 |
|
), f"img_batch must be of size Bx3xHxW, got {img_batch.shape}" |
|
logging.info("Computing image embeddings for the provided images...") |
|
backbone_out = self.model.forward_image(img_batch) |
|
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out) |
|
|
|
if self.model.directly_add_no_mem_embed: |
|
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed |
|
|
|
feats = [ |
|
feat.permute(1, 2, 0).view(batch_size, -1, *feat_size) |
|
for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1]) |
|
][::-1] |
|
self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]} |
|
self._is_image_set = True |
|
self._is_batch = True |
|
logging.info("Image embeddings computed.") |
|
|
|
def predict_batch( |
|
self, |
|
point_coords_batch: List[np.ndarray] = None, |
|
point_labels_batch: List[np.ndarray] = None, |
|
box_batch: List[np.ndarray] = None, |
|
mask_input_batch: List[np.ndarray] = None, |
|
multimask_output: bool = True, |
|
return_logits: bool = False, |
|
normalize_coords=True, |
|
) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]: |
|
"""This function is very similar to predict(...), however it is used for batched mode, when the model is expected to generate predictions on multiple images. |
|
It returns a tupele of lists of masks, ious, and low_res_masks_logits. |
|
""" |
|
assert self._is_batch, "This function should only be used when in batched mode" |
|
if not self._is_image_set: |
|
raise RuntimeError( |
|
"An image must be set with .set_image_batch(...) before mask prediction." |
|
) |
|
num_images = len(self._features["image_embed"]) |
|
all_masks = [] |
|
all_ious = [] |
|
all_low_res_masks = [] |
|
for img_idx in range(num_images): |
|
|
|
point_coords = ( |
|
point_coords_batch[img_idx] if point_coords_batch is not None else None |
|
) |
|
point_labels = ( |
|
point_labels_batch[img_idx] if point_labels_batch is not None else None |
|
) |
|
box = box_batch[img_idx] if box_batch is not None else None |
|
mask_input = ( |
|
mask_input_batch[img_idx] if mask_input_batch is not None else None |
|
) |
|
mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts( |
|
point_coords, |
|
point_labels, |
|
box, |
|
mask_input, |
|
normalize_coords, |
|
img_idx=img_idx, |
|
) |
|
masks, iou_predictions, low_res_masks = self._predict( |
|
unnorm_coords, |
|
labels, |
|
unnorm_box, |
|
mask_input, |
|
multimask_output, |
|
return_logits=return_logits, |
|
img_idx=img_idx, |
|
) |
|
masks_np = masks.squeeze(0).float().detach().cpu().numpy() |
|
iou_predictions_np = ( |
|
iou_predictions.squeeze(0).float().detach().cpu().numpy() |
|
) |
|
low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy() |
|
all_masks.append(masks_np) |
|
all_ious.append(iou_predictions_np) |
|
all_low_res_masks.append(low_res_masks_np) |
|
|
|
return all_masks, all_ious, all_low_res_masks |
|
|
|
def predict( |
|
self, |
|
point_coords: Optional[np.ndarray] = None, |
|
point_labels: Optional[np.ndarray] = None, |
|
box: Optional[np.ndarray] = None, |
|
mask_input: Optional[np.ndarray] = None, |
|
multimask_output: bool = True, |
|
return_logits: bool = False, |
|
normalize_coords=True, |
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: |
|
""" |
|
Predict masks for the given input prompts, using the currently set image. |
|
|
|
Arguments: |
|
point_coords (np.ndarray or None): A Nx2 array of point prompts to the |
|
model. Each point is in (X,Y) in pixels. |
|
point_labels (np.ndarray or None): A length N array of labels for the |
|
point prompts. 1 indicates a foreground point and 0 indicates a |
|
background point. |
|
box (np.ndarray or None): A length 4 array given a box prompt to the |
|
model, in XYXY format. |
|
mask_input (np.ndarray): A low resolution mask input to the model, typically |
|
coming from a previous prediction iteration. Has form 1xHxW, where |
|
for SAM, H=W=256. |
|
multimask_output (bool): If true, the model will return three masks. |
|
For ambiguous input prompts (such as a single click), this will often |
|
produce better masks than a single prediction. If only a single |
|
mask is needed, the model's predicted quality score can be used |
|
to select the best mask. For non-ambiguous prompts, such as multiple |
|
input prompts, multimask_output=False can give better results. |
|
return_logits (bool): If true, returns un-thresholded masks logits |
|
instead of a binary mask. |
|
normalize_coords (bool): If true, the point coordinates will be normalized to the range [0,1] and point_coords is expected to be wrt. image dimensions. |
|
|
|
Returns: |
|
(np.ndarray): The output masks in CxHxW format, where C is the |
|
number of masks, and (H, W) is the original image size. |
|
(np.ndarray): An array of length C containing the model's |
|
predictions for the quality of each mask. |
|
(np.ndarray): An array of shape CxHxW, where C is the number |
|
of masks and H=W=256. These low resolution logits can be passed to |
|
a subsequent iteration as mask input. |
|
""" |
|
if not self._is_image_set: |
|
raise RuntimeError( |
|
"An image must be set with .set_image(...) before mask prediction." |
|
) |
|
|
|
|
|
|
|
mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts( |
|
point_coords, point_labels, box, mask_input, normalize_coords |
|
) |
|
|
|
masks, iou_predictions, low_res_masks = self._predict( |
|
unnorm_coords, |
|
labels, |
|
unnorm_box, |
|
mask_input, |
|
multimask_output, |
|
return_logits=return_logits, |
|
) |
|
|
|
masks_np = masks.squeeze(0).float().detach().cpu().numpy() |
|
iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy() |
|
low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy() |
|
return masks_np, iou_predictions_np, low_res_masks_np |
|
|
|
def _prep_prompts( |
|
self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1 |
|
): |
|
|
|
unnorm_coords, labels, unnorm_box, mask_input = None, None, None, None |
|
if point_coords is not None: |
|
assert ( |
|
point_labels is not None |
|
), "point_labels must be supplied if point_coords is supplied." |
|
point_coords = torch.as_tensor( |
|
point_coords, dtype=torch.float, device=self.device |
|
) |
|
unnorm_coords = self._transforms.transform_coords( |
|
point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx] |
|
) |
|
labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) |
|
if len(unnorm_coords.shape) == 2: |
|
unnorm_coords, labels = unnorm_coords[None, ...], labels[None, ...] |
|
if box is not None: |
|
box = torch.as_tensor(box, dtype=torch.float, device=self.device) |
|
unnorm_box = self._transforms.transform_boxes( |
|
box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx] |
|
) |
|
if mask_logits is not None: |
|
mask_input = torch.as_tensor( |
|
mask_logits, dtype=torch.float, device=self.device |
|
) |
|
if len(mask_input.shape) == 3: |
|
mask_input = mask_input[None, :, :, :] |
|
return mask_input, unnorm_coords, labels, unnorm_box |
|
|
|
@torch.no_grad() |
|
def _predict( |
|
self, |
|
point_coords: Optional[torch.Tensor], |
|
point_labels: Optional[torch.Tensor], |
|
boxes: Optional[torch.Tensor] = None, |
|
mask_input: Optional[torch.Tensor] = None, |
|
multimask_output: bool = True, |
|
return_logits: bool = False, |
|
img_idx: int = -1, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Predict masks for the given input prompts, using the currently set image. |
|
Input prompts are batched torch tensors and are expected to already be |
|
transformed to the input frame using SAM2Transforms. |
|
|
|
Arguments: |
|
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the |
|
model. Each point is in (X,Y) in pixels. |
|
point_labels (torch.Tensor or None): A BxN array of labels for the |
|
point prompts. 1 indicates a foreground point and 0 indicates a |
|
background point. |
|
boxes (np.ndarray or None): A Bx4 array given a box prompt to the |
|
model, in XYXY format. |
|
mask_input (np.ndarray): A low resolution mask input to the model, typically |
|
coming from a previous prediction iteration. Has form Bx1xHxW, where |
|
for SAM, H=W=256. Masks returned by a previous iteration of the |
|
predict method do not need further transformation. |
|
multimask_output (bool): If true, the model will return three masks. |
|
For ambiguous input prompts (such as a single click), this will often |
|
produce better masks than a single prediction. If only a single |
|
mask is needed, the model's predicted quality score can be used |
|
to select the best mask. For non-ambiguous prompts, such as multiple |
|
input prompts, multimask_output=False can give better results. |
|
return_logits (bool): If true, returns un-thresholded masks logits |
|
instead of a binary mask. |
|
|
|
Returns: |
|
(torch.Tensor): The output masks in BxCxHxW format, where C is the |
|
number of masks, and (H, W) is the original image size. |
|
(torch.Tensor): An array of shape BxC containing the model's |
|
predictions for the quality of each mask. |
|
(torch.Tensor): An array of shape BxCxHxW, where C is the number |
|
of masks and H=W=256. These low res logits can be passed to |
|
a subsequent iteration as mask input. |
|
""" |
|
if not self._is_image_set: |
|
raise RuntimeError( |
|
"An image must be set with .set_image(...) before mask prediction." |
|
) |
|
|
|
if point_coords is not None: |
|
concat_points = (point_coords, point_labels) |
|
else: |
|
concat_points = None |
|
|
|
|
|
if boxes is not None: |
|
box_coords = boxes.reshape(-1, 2, 2) |
|
box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device) |
|
box_labels = box_labels.repeat(boxes.size(0), 1) |
|
|
|
|
|
if concat_points is not None: |
|
concat_coords = torch.cat([box_coords, concat_points[0]], dim=1) |
|
concat_labels = torch.cat([box_labels, concat_points[1]], dim=1) |
|
concat_points = (concat_coords, concat_labels) |
|
else: |
|
concat_points = (box_coords, box_labels) |
|
|
|
sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder( |
|
points=concat_points, |
|
boxes=None, |
|
masks=mask_input, |
|
) |
|
|
|
|
|
batched_mode = ( |
|
concat_points is not None and concat_points[0].shape[0] > 1 |
|
) |
|
high_res_features = [ |
|
feat_level[img_idx].unsqueeze(0) |
|
for feat_level in self._features["high_res_feats"] |
|
] |
|
low_res_masks, iou_predictions, _, _ = self.model.sam_mask_decoder( |
|
image_embeddings=self._features["image_embed"][img_idx].unsqueeze(0), |
|
image_pe=self.model.sam_prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=sparse_embeddings, |
|
dense_prompt_embeddings=dense_embeddings, |
|
multimask_output=multimask_output, |
|
repeat_image=batched_mode, |
|
high_res_features=high_res_features, |
|
) |
|
|
|
|
|
masks = self._transforms.postprocess_masks( |
|
low_res_masks, self._orig_hw[img_idx] |
|
) |
|
low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0) |
|
if not return_logits: |
|
masks = masks > self.mask_threshold |
|
|
|
return masks, iou_predictions, low_res_masks |
|
|
|
def get_image_embedding(self) -> torch.Tensor: |
|
""" |
|
Returns the image embeddings for the currently set image, with |
|
shape 1xCxHxW, where C is the embedding dimension and (H,W) are |
|
the embedding spatial dimension of SAM (typically C=256, H=W=64). |
|
""" |
|
if not self._is_image_set: |
|
raise RuntimeError( |
|
"An image must be set with .set_image(...) to generate an embedding." |
|
) |
|
assert ( |
|
self._features is not None |
|
), "Features must exist if an image has been set." |
|
return self._features["image_embed"] |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
return self.model.device |
|
|
|
def reset_predictor(self) -> None: |
|
""" |
|
Resets the image embeddings and other state variables. |
|
""" |
|
self._is_image_set = False |
|
self._features = None |
|
self._orig_hw = None |
|
self._is_batch = False |
|
|