|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import datetime |
|
import io |
|
import os |
|
import math |
|
import time |
|
import json |
|
import argparse |
|
import numpy as np |
|
from pathlib import Path |
|
from collections import defaultdict, deque |
|
from timm.utils import get_state_dict |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch._six import inf |
|
from torchmetrics import Metric |
|
from tensorboardX import SummaryWriter |
|
|
|
|
|
def bool_flag(s): |
|
""" |
|
Parse boolean arguments from the command line. |
|
""" |
|
FALSY_STRINGS = {"off", "false", "0"} |
|
TRUTHY_STRINGS = {"on", "true", "1"} |
|
if s.lower() in FALSY_STRINGS: |
|
return False |
|
elif s.lower() in TRUTHY_STRINGS: |
|
return True |
|
else: |
|
raise argparse.ArgumentTypeError("invalid value for a boolean flag") |
|
|
|
|
|
class SmoothedValue(object): |
|
"""Track a series of values and provide access to smoothed values over a |
|
window or the global series average. |
|
""" |
|
|
|
def __init__(self, window_size=20, fmt=None): |
|
if fmt is None: |
|
fmt = "{median:.4f} ({global_avg:.4f})" |
|
self.deque = deque(maxlen=window_size) |
|
self.total = 0.0 |
|
self.count = 0 |
|
self.fmt = fmt |
|
|
|
def update(self, value, n=1): |
|
self.deque.append(value) |
|
self.count += n |
|
self.total += value * n |
|
|
|
def synchronize_between_processes(self): |
|
""" |
|
Warning: does not synchronize the deque! |
|
""" |
|
if not is_dist_avail_and_initialized(): |
|
return |
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') |
|
dist.barrier() |
|
dist.all_reduce(t) |
|
t = t.tolist() |
|
self.count = int(t[0]) |
|
self.total = t[1] |
|
|
|
@property |
|
def median(self): |
|
d = torch.tensor(list(self.deque)) |
|
return d.median().item() |
|
|
|
@property |
|
def avg(self): |
|
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
return d.mean().item() |
|
|
|
@property |
|
def global_avg(self): |
|
return self.total / self.count |
|
|
|
@property |
|
def max(self): |
|
return max(self.deque) |
|
|
|
@property |
|
def value(self): |
|
return self.deque[-1] |
|
|
|
def __str__(self): |
|
return self.fmt.format( |
|
median=self.median, |
|
avg=self.avg, |
|
global_avg=self.global_avg, |
|
max=self.max, |
|
value=self.value) |
|
|
|
|
|
class MetricLogger(object): |
|
def __init__(self, delimiter="\t"): |
|
self.meters = defaultdict(SmoothedValue) |
|
self.delimiter = delimiter |
|
|
|
def update(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if v is None: |
|
continue |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
def __getattr__(self, attr): |
|
if attr in self.meters: |
|
return self.meters[attr] |
|
if attr in self.__dict__: |
|
return self.__dict__[attr] |
|
raise AttributeError("'{}' object has no attribute '{}'".format( |
|
type(self).__name__, attr)) |
|
|
|
def __str__(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
loss_str.append( |
|
"{}: {}".format(name, str(meter)) |
|
) |
|
return self.delimiter.join(loss_str) |
|
|
|
def synchronize_between_processes(self): |
|
for meter in self.meters.values(): |
|
meter.synchronize_between_processes() |
|
|
|
def add_meter(self, name, meter): |
|
self.meters[name] = meter |
|
|
|
def log_every(self, iterable, print_freq, header=None): |
|
i = 0 |
|
if not header: |
|
header = '' |
|
start_time = time.time() |
|
end = time.time() |
|
iter_time = SmoothedValue(fmt='{avg:.4f}') |
|
data_time = SmoothedValue(fmt='{avg:.4f}') |
|
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' |
|
log_msg = [ |
|
header, |
|
'[{0' + space_fmt + '}/{1}]', |
|
'eta: {eta}', |
|
'{meters}', |
|
'time: {time}', |
|
'data: {data}' |
|
] |
|
if torch.cuda.is_available(): |
|
log_msg.append('max mem: {memory:.0f}') |
|
log_msg = self.delimiter.join(log_msg) |
|
MB = 1024.0 * 1024.0 |
|
for obj in iterable: |
|
data_time.update(time.time() - end) |
|
yield obj |
|
iter_time.update(time.time() - end) |
|
if i % print_freq == 0 or i == len(iterable) - 1: |
|
eta_seconds = iter_time.global_avg * (len(iterable) - i) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
if torch.cuda.is_available(): |
|
print(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time), |
|
memory=torch.cuda.max_memory_allocated() / MB)) |
|
else: |
|
print(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time))) |
|
i += 1 |
|
end = time.time() |
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('{} Total time: {} ({:.4f} s / it)'.format( |
|
header, total_time_str, total_time / len(iterable))) |
|
|
|
|
|
class TensorboardLogger(object): |
|
def __init__(self, log_dir): |
|
self.writer = SummaryWriter(logdir=log_dir) |
|
self.step = 0 |
|
|
|
def set_step(self, step=None): |
|
if step is not None: |
|
self.step = step |
|
else: |
|
self.step += 1 |
|
|
|
def update(self, head='scalar', step=None, **kwargs): |
|
for k, v in kwargs.items(): |
|
if v is None: |
|
continue |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.writer.add_scalar(head + "/" + k, v, self.step if step is None else step) |
|
|
|
def flush(self): |
|
self.writer.flush() |
|
|
|
|
|
def _load_checkpoint_for_ema(model_ema, checkpoint): |
|
""" |
|
Workaround for ModelEma._load_checkpoint to accept an already-loaded object |
|
""" |
|
mem_file = io.BytesIO() |
|
torch.save(checkpoint, mem_file) |
|
mem_file.seek(0) |
|
model_ema._load_checkpoint(mem_file) |
|
|
|
|
|
def setup_for_distributed(is_master): |
|
""" |
|
This function disables printing when not in master process |
|
""" |
|
import builtins as __builtin__ |
|
builtin_print = __builtin__.print |
|
|
|
def print(*args, **kwargs): |
|
force = kwargs.pop('force', False) |
|
if is_master or force: |
|
builtin_print(*args, **kwargs) |
|
|
|
__builtin__.print = print |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def save_on_master(*args, **kwargs): |
|
if is_main_process(): |
|
torch.save(*args, **kwargs) |
|
|
|
|
|
def _get_rank_env(): |
|
if "RANK" in os.environ: |
|
return int(os.environ["RANK"]) |
|
else: |
|
return int(os.environ['OMPI_COMM_WORLD_RANK']) |
|
|
|
|
|
def _get_local_rank_env(): |
|
if "LOCAL_RANK" in os.environ: |
|
return int(os.environ["LOCAL_RANK"]) |
|
else: |
|
return int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) |
|
|
|
|
|
def _get_world_size_env(): |
|
if "WORLD_SIZE" in os.environ: |
|
return int(os.environ["WORLD_SIZE"]) |
|
else: |
|
return int(os.environ['OMPI_COMM_WORLD_SIZE']) |
|
|
|
|
|
|
|
def init_distributed_mode(args): |
|
if args.dist_on_itp: |
|
args.rank = _get_rank_env() |
|
args.world_size = _get_world_size_env() |
|
args.gpu = _get_local_rank_env() |
|
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) |
|
os.environ['LOCAL_RANK'] = str(args.gpu) |
|
os.environ['RANK'] = str(args.rank) |
|
os.environ['WORLD_SIZE'] = str(args.world_size) |
|
|
|
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: |
|
args.rank = int(os.environ["RANK"]) |
|
args.world_size = int(os.environ['WORLD_SIZE']) |
|
args.gpu = int(os.environ['LOCAL_RANK']) |
|
elif 'SLURM_PROCID' in os.environ: |
|
args.rank = int(os.environ['SLURM_PROCID']) |
|
args.gpu = args.rank % torch.cuda.device_count() |
|
else: |
|
print('Not using distributed mode') |
|
args.distributed = False |
|
return |
|
|
|
args.distributed = True |
|
|
|
torch.cuda.set_device(args.gpu) |
|
args.dist_backend = 'nccl' |
|
print('| distributed init (rank {}): {}, gpu {}'.format( |
|
args.rank, args.dist_url, args.gpu), flush=True) |
|
torch.distributed.init_process_group( |
|
backend=args.dist_backend, init_method=args.dist_url, |
|
world_size=args.world_size, rank=args.rank, |
|
timeout=datetime.timedelta(0, 7200) |
|
) |
|
torch.distributed.barrier() |
|
setup_for_distributed(args.rank == 0) |
|
|
|
|
|
def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"): |
|
missing_keys = [] |
|
unexpected_keys = [] |
|
error_msgs = [] |
|
|
|
metadata = getattr(state_dict, '_metadata', None) |
|
state_dict = state_dict.copy() |
|
if metadata is not None: |
|
state_dict._metadata = metadata |
|
|
|
def load(module, prefix=''): |
|
local_metadata = {} if metadata is None else metadata.get( |
|
prefix[:-1], {}) |
|
module._load_from_state_dict( |
|
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) |
|
for name, child in module._modules.items(): |
|
if child is not None: |
|
load(child, prefix + name + '.') |
|
|
|
load(model, prefix=prefix) |
|
|
|
warn_missing_keys = [] |
|
ignore_missing_keys = [] |
|
for key in missing_keys: |
|
keep_flag = True |
|
for ignore_key in ignore_missing.split('|'): |
|
if ignore_key in key: |
|
keep_flag = False |
|
break |
|
if keep_flag: |
|
warn_missing_keys.append(key) |
|
else: |
|
ignore_missing_keys.append(key) |
|
|
|
missing_keys = warn_missing_keys |
|
|
|
if len(missing_keys) > 0: |
|
print("Weights of {} not initialized from pretrained model: {}".format( |
|
model.__class__.__name__, missing_keys)) |
|
if len(unexpected_keys) > 0: |
|
print("Weights from pretrained model not used in {}: {}".format( |
|
model.__class__.__name__, unexpected_keys)) |
|
if len(ignore_missing_keys) > 0: |
|
print("Ignored weights of {} not initialized from pretrained model: {}".format( |
|
model.__class__.__name__, ignore_missing_keys)) |
|
if len(error_msgs) > 0: |
|
print('\n'.join(error_msgs)) |
|
|
|
|
|
class NativeScalerWithGradNormCount: |
|
state_dict_key = "amp_scaler" |
|
|
|
def __init__(self): |
|
self._scaler = torch.cuda.amp.GradScaler() |
|
|
|
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): |
|
self._scaler.scale(loss).backward(create_graph=create_graph) |
|
if update_grad: |
|
if clip_grad is not None: |
|
assert parameters is not None |
|
self._scaler.unscale_(optimizer) |
|
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) |
|
else: |
|
self._scaler.unscale_(optimizer) |
|
norm = get_grad_norm_(parameters) |
|
self._scaler.step(optimizer) |
|
self._scaler.update() |
|
else: |
|
norm = None |
|
return norm |
|
|
|
def state_dict(self): |
|
return self._scaler.state_dict() |
|
|
|
def load_state_dict(self, state_dict): |
|
self._scaler.load_state_dict(state_dict) |
|
|
|
|
|
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: |
|
if isinstance(parameters, torch.Tensor): |
|
parameters = [parameters] |
|
parameters = [p for p in parameters if p.grad is not None] |
|
norm_type = float(norm_type) |
|
if len(parameters) == 0: |
|
return torch.tensor(0.) |
|
device = parameters[0].grad.device |
|
if norm_type == inf: |
|
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) |
|
else: |
|
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) |
|
return total_norm |
|
|
|
|
|
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, |
|
start_warmup_value=0, warmup_steps=-1, sched_type="cos"): |
|
warmup_schedule = np.array([]) |
|
warmup_iters = warmup_epochs * niter_per_ep |
|
if warmup_steps > 0: |
|
warmup_iters = warmup_steps |
|
print("Set warmup steps = %d" % warmup_iters) |
|
if warmup_epochs > 0: |
|
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) |
|
|
|
if sched_type == "cos": |
|
iters = np.arange(epochs * niter_per_ep - warmup_iters) |
|
schedule = np.array([ |
|
final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters]) |
|
elif sched_type == "linear": |
|
schedule = np.linspace(base_value, final_value, epochs * niter_per_ep - warmup_iters) |
|
else: |
|
raise NotImplementedError() |
|
|
|
schedule = np.concatenate((warmup_schedule, schedule)) |
|
|
|
assert len(schedule) == epochs * niter_per_ep |
|
return schedule |
|
|
|
|
|
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): |
|
output_dir = Path(args.output_dir) |
|
if loss_scaler is not None: |
|
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch)] |
|
for checkpoint_path in checkpoint_paths: |
|
to_save = { |
|
'model': model_without_ddp.state_dict(), |
|
'optimizer': optimizer.state_dict(), |
|
'epoch': epoch, |
|
'scaler': loss_scaler.state_dict(), |
|
'args': args, |
|
} |
|
|
|
if model_ema is not None: |
|
to_save['model_ema'] = get_state_dict(model_ema) |
|
|
|
save_on_master(to_save, checkpoint_path) |
|
else: |
|
client_state = {'epoch': epoch, "args": args} |
|
if model_ema is not None: |
|
client_state['model_ema'] = get_state_dict(model_ema) |
|
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch, client_state=client_state) |
|
|
|
|
|
def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): |
|
output_dir = Path(args.output_dir) |
|
if loss_scaler is not None: |
|
|
|
if args.auto_resume and len(args.resume) == 0: |
|
import glob |
|
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth')) |
|
latest_ckpt = -1 |
|
for ckpt in all_checkpoints: |
|
t = ckpt.split('-')[-1].split('.')[0] |
|
if t.isdigit(): |
|
latest_ckpt = max(int(t), latest_ckpt) |
|
if latest_ckpt >= 0: |
|
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) |
|
print("Auto resume checkpoint: %s" % args.resume) |
|
|
|
if args.resume: |
|
if args.resume.startswith('https'): |
|
checkpoint = torch.hub.load_state_dict_from_url( |
|
args.resume, map_location='cpu', check_hash=True) |
|
else: |
|
checkpoint = torch.load(args.resume, map_location='cpu') |
|
model_without_ddp.load_state_dict(checkpoint['model']) |
|
print("Resume checkpoint %s" % args.resume) |
|
if 'optimizer' in checkpoint and 'epoch' in checkpoint: |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
args.start_epoch = checkpoint['epoch'] + 1 |
|
if hasattr(args, 'model_ema') and args.model_ema: |
|
_load_checkpoint_for_ema(model_ema, checkpoint['model_ema']) |
|
if 'scaler' in checkpoint: |
|
loss_scaler.load_state_dict(checkpoint['scaler']) |
|
print("With optim & sched!") |
|
else: |
|
|
|
if args.auto_resume: |
|
import glob |
|
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*')) |
|
latest_ckpt = -1 |
|
for ckpt in all_checkpoints: |
|
t = ckpt.split('-')[-1].split('.')[0] |
|
if t.isdigit(): |
|
latest_ckpt = max(int(t), latest_ckpt) |
|
if latest_ckpt >= 0: |
|
args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt) |
|
print("Auto resume checkpoint: %d" % latest_ckpt) |
|
_, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt) |
|
args.start_epoch = client_states['epoch'] + 1 |
|
if model_ema is not None: |
|
if args.model_ema: |
|
_load_checkpoint_for_ema(model_ema, client_states['model_ema']) |
|
|
|
|
|
|
|
def load_model_and_may_interpolate(ckpt_path, model, model_key, model_prefix): |
|
if ckpt_path.startswith('https'): |
|
checkpoint = torch.hub.load_state_dict_from_url( |
|
ckpt_path, map_location='cpu', check_hash=True) |
|
else: |
|
checkpoint = torch.load(ckpt_path, map_location='cpu') |
|
|
|
print("Load ckpt from %s" % ckpt_path) |
|
checkpoint_model = None |
|
for model_key in model_key.split('|'): |
|
if model_key in checkpoint: |
|
checkpoint_model = checkpoint[model_key] |
|
print("Load state_dict by model_key = %s" % model_key) |
|
break |
|
|
|
if checkpoint_model is None: |
|
checkpoint_model = checkpoint |
|
|
|
state_dict = model.state_dict() |
|
for k in ['head.weight', 'head.bias']: |
|
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: |
|
print(f"Removing key {k} from pretrained checkpoint") |
|
del checkpoint_model[k] |
|
|
|
|
|
for pos_embed_key in ("vision_pos_embed", "pos_embed", "beit3.encoder.embed_positions.A.weight"): |
|
if pos_embed_key in checkpoint_model: |
|
pos_embed_checkpoint = checkpoint_model[pos_embed_key] |
|
embedding_size = pos_embed_checkpoint.shape[-1] |
|
if pos_embed_key == "beit3.encoder.embed_positions.A.weight": |
|
|
|
torchscale_model = True |
|
num_patches = model.beit3.vision_embed.num_patches |
|
num_extra_tokens = model.beit3.vision_embed.num_position_embeddings() + 2 - num_patches |
|
else: |
|
torchscale_model = False |
|
num_patches = model.patch_embed.num_patches |
|
num_extra_tokens = getattr(model, pos_embed_key).shape[-2] - num_patches |
|
|
|
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) |
|
|
|
new_size = int(num_patches ** 0.5) |
|
|
|
if orig_size != new_size: |
|
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) |
|
if torchscale_model: |
|
extra_tokens = pos_embed_checkpoint[:num_extra_tokens].unsqueeze(0) |
|
|
|
pos_tokens = pos_embed_checkpoint[num_extra_tokens:] |
|
else: |
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] |
|
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] |
|
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) |
|
pos_tokens = torch.nn.functional.interpolate( |
|
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) |
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) |
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) |
|
if torchscale_model: |
|
new_pos_embed = new_pos_embed.squeeze(0) |
|
checkpoint_model[pos_embed_key] = new_pos_embed |
|
|
|
load_state_dict(model, checkpoint_model, prefix=model_prefix) |
|
|
|
|
|
def create_ds_config(args): |
|
args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json") |
|
with open(args.deepspeed_config, mode="w") as writer: |
|
ds_config = { |
|
"train_batch_size": args.batch_size * args.update_freq * get_world_size(), |
|
"train_micro_batch_size_per_gpu": args.batch_size, |
|
"steps_per_print": 1000, |
|
"optimizer": { |
|
"type": "Adam", |
|
"adam_w_mode": True, |
|
"params": { |
|
"lr": args.lr, |
|
"weight_decay": args.weight_decay, |
|
"bias_correction": True, |
|
"betas": [ |
|
args.opt_betas[0], |
|
args.opt_betas[1] |
|
], |
|
"eps": args.opt_eps |
|
} |
|
}, |
|
"fp16": { |
|
"enabled": True, |
|
"loss_scale": 0, |
|
"initial_scale_power": getattr(args, "initial_scale_power", 12), |
|
"loss_scale_window": 1000, |
|
"hysteresis": 2, |
|
"min_loss_scale": 1 |
|
}, |
|
"amp": { |
|
"enabled": False, |
|
"opt_level": "O2" |
|
} |
|
} |
|
|
|
if args.clip_grad is not None: |
|
ds_config.update({'gradient_clipping': args.clip_grad}) |
|
|
|
if args.zero_stage == 1: |
|
ds_config.update({"zero_optimization": {"stage": args.zero_stage, "reduce_bucket_size": 5e8}}) |
|
elif args.zero_stage > 1: |
|
raise NotImplementedError() |
|
|
|
writer.write(json.dumps(ds_config, indent=2)) |
|
|
|
|
|
def merge_batch_tensors_by_dict_key(batch): |
|
batch_tensors = {} |
|
for tensor_key in batch[0]: |
|
if isinstance(batch[0][tensor_key], torch.Tensor): |
|
batch_tensors[tensor_key] = torch.stack([d[tensor_key] for d in batch]) |
|
else: |
|
batch_tensors[tensor_key] = torch.tensor([d[tensor_key] for d in batch], dtype=torch.long) |
|
return batch_tensors |
|
|
|
|
|
def get_loss_scale_for_deepspeed(model): |
|
optimizer = model.optimizer |
|
loss_scale = None |
|
if hasattr(optimizer, 'loss_scale'): |
|
loss_scale = optimizer.loss_scale |
|
elif hasattr(optimizer, 'cur_scale'): |
|
loss_scale = optimizer.cur_scale |
|
return loss_scale |
|
|
|
|
|
class GatherLayer(torch.autograd.Function): |
|
""" |
|
Gather tensors from all workers with support for backward propagation: |
|
This implementation does not cut the gradients as torch.distributed.all_gather does. |
|
""" |
|
@staticmethod |
|
def forward(ctx, x): |
|
output = [torch.zeros_like(x) for _ in range(dist.get_world_size())] |
|
dist.all_gather(output, x) |
|
return tuple(output) |
|
@staticmethod |
|
def backward(ctx, *grads): |
|
all_gradients = torch.stack(grads) |
|
dist.all_reduce(all_gradients) |
|
return all_gradients[dist.get_rank()] |
|
|
|
|
|
def gather_features( |
|
image_features, |
|
text_features, |
|
): |
|
gathered_image_features = GatherLayer.apply(image_features) |
|
gathered_text_features = GatherLayer.apply(text_features) |
|
all_image_features = torch.cat(gathered_image_features) |
|
all_text_features = torch.cat(gathered_text_features) |
|
|
|
return all_image_features, all_text_features |
|
|
|
|
|
|
|
class ClipLoss(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
cache_labels=False, |
|
rank=0, |
|
world_size=1, |
|
): |
|
super().__init__() |
|
self.cache_labels = cache_labels |
|
self.rank = rank |
|
self.world_size = world_size |
|
|
|
|
|
self.prev_num_logits = 0 |
|
self.labels = {} |
|
|
|
def forward(self, image_features, text_features, logit_scale): |
|
device = image_features.device |
|
if self.world_size > 1: |
|
all_image_features, all_text_features = gather_features( |
|
image_features, text_features |
|
) |
|
|
|
logits_per_image = logit_scale * image_features @ all_text_features.T |
|
logits_per_text = logit_scale * text_features @ all_image_features.T |
|
else: |
|
logits_per_image = logit_scale * image_features @ text_features.T |
|
logits_per_text = logit_scale * text_features @ image_features.T |
|
|
|
|
|
num_logits = logits_per_image.shape[0] |
|
if self.prev_num_logits != num_logits or device not in self.labels: |
|
labels = torch.arange(num_logits, device=device, dtype=torch.long) |
|
if self.world_size > 1: |
|
labels = labels + num_logits * self.rank |
|
if self.cache_labels: |
|
self.labels[device] = labels |
|
self.prev_num_logits = num_logits |
|
else: |
|
labels = self.labels[device] |
|
|
|
total_loss = ( |
|
F.cross_entropy(logits_per_image, labels) + |
|
F.cross_entropy(logits_per_text, labels) |
|
) / 2 |
|
return total_loss, logits_per_image, logits_per_text |
|
|
|
|
|
def write_result_to_jsonl(test_stats, result_file): |
|
with open(result_file, mode="w", encoding="utf-8") as writer: |
|
writer.write(json.dumps(test_stats, indent=None)) |
|
|
|
|
|
def read_result_from_jsonl(result_file): |
|
with open(result_file, mode="r", encoding="utf-8") as reader: |
|
return json.load(reader) |
|
|
|
|
|
|
|
class VQAScore(Metric): |
|
def __init__(self, dist_sync_on_step=False): |
|
super().__init__(dist_sync_on_step=dist_sync_on_step) |
|
self.add_state("score", default=torch.tensor(0.0), dist_reduce_fx="sum") |
|
self.add_state("total", default=torch.tensor(0.0), dist_reduce_fx="sum") |
|
|
|
def update(self, logits, target): |
|
logits, target = ( |
|
logits.detach().float().to(self.score.device), |
|
target.detach().float().to(self.score.device), |
|
) |
|
logits = torch.max(logits, 1)[1] |
|
one_hots = torch.zeros(*target.size()).to(target) |
|
one_hots.scatter_(1, logits.view(-1, 1), 1) |
|
scores = one_hots * target |
|
|
|
self.score += scores.sum() |
|
self.total += len(logits) |
|
|
|
def compute(self): |
|
return self.score / self.total |
|
|
|
|
|
class BertCaptioningLoss(nn.Module): |
|
def __init__(self, label_smoothing, drop_worst_ratio, drop_worst_after): |
|
super().__init__() |
|
self.label_smoothing = label_smoothing |
|
self.drop_worst_ratio = drop_worst_ratio |
|
self.drop_worst_after = drop_worst_after |
|
self.log_soft = nn.LogSoftmax(dim=1) |
|
self.kl = nn.KLDivLoss(reduction='none') |
|
self.iter = 0 |
|
|
|
def forward(self, logits, target, iter): |
|
eps = self.label_smoothing |
|
n_class = logits.size(1) |
|
one_hot = torch.zeros_like(logits).scatter(1, target.view(-1, 1), 1) |
|
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1) |
|
log_prb = self.log_soft(logits) |
|
loss = self.kl(log_prb, one_hot).sum(1) |
|
|
|
if self.drop_worst_ratio > 0 and iter > self.drop_worst_after: |
|
loss, _ = torch.topk(loss, |
|
k=int(loss.shape[0] * (1-self.drop_worst_ratio)), |
|
largest=False) |
|
loss = loss.mean() |
|
|
|
return loss |
|
|
|
|
|
class BeamHypotheses(object): |
|
def __init__(self, n_hyp, max_length, length_penalty, early_stopping): |
|
""" |
|
Initialize n-best list of hypotheses. |
|
""" |
|
self.max_length = max_length - 1 |
|
self.length_penalty = length_penalty |
|
self.early_stopping = early_stopping |
|
self.n_hyp = n_hyp |
|
self.hyp = [] |
|
self.worst_score = 1e9 |
|
|
|
def __len__(self): |
|
""" |
|
Number of hypotheses in the list. |
|
""" |
|
return len(self.hyp) |
|
|
|
def add(self, hyp, sum_logprobs): |
|
""" |
|
Add a new hypothesis to the list. |
|
""" |
|
score = sum_logprobs / len(hyp) ** self.length_penalty |
|
if len(self) < self.n_hyp or score > self.worst_score: |
|
self.hyp.append((score, hyp)) |
|
if len(self) > self.n_hyp: |
|
sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.hyp)]) |
|
del self.hyp[sorted_scores[0][1]] |
|
self.worst_score = sorted_scores[1][0] |
|
else: |
|
self.worst_score = min(score, self.worst_score) |
|
|
|
def is_done(self, best_sum_logprobs): |
|
""" |
|
If there are enough hypotheses and that none of the hypotheses being generated |
|
can become better than the worst one in the heap, then we are done with this sentence. |
|
""" |
|
if len(self) < self.n_hyp: |
|
return False |
|
elif self.early_stopping: |
|
return True |
|
else: |
|
return self.worst_score >= best_sum_logprobs / self.max_length ** self.length_penalty |
|
|
|
|
|
def dump_predictions(args, result, file_suffix): |
|
global_rank = get_rank() |
|
jsons = None |
|
if global_rank >= 0: |
|
output_file = os.path.join(args.task_cache_path, f"submit_{global_rank}_{file_suffix}.json") |
|
with open(output_file, "w") as fp: |
|
json.dump(result, fp, indent=2) |
|
torch.distributed.barrier() |
|
|
|
if global_rank == 0: |
|
world_size = get_world_size() |
|
jsons = [] |
|
for i in range(world_size): |
|
each_file = os.path.join(args.task_cache_path, f"submit_{i}_{file_suffix}.json") |
|
with open(each_file, "r") as fp: |
|
jsons += json.load(fp) |
|
|
|
new_jsons = [] |
|
res_dict = dict() |
|
if args.task in ["coco_captioning", "nocaps"]: |
|
qid_key = "image_id" |
|
else: |
|
|
|
qid_key = "question_id" |
|
for item in jsons: |
|
if item[qid_key] in res_dict: |
|
continue |
|
new_jsons.append(item) |
|
res_dict[item[qid_key]] = item |
|
jsons = new_jsons |
|
|
|
torch.distributed.barrier() |
|
os.remove(output_file) |
|
else: |
|
jsons = result |
|
|
|
result_file = os.path.join(args.output_dir, f"submit_{file_suffix}.json") |
|
if jsons is not None: |
|
with open(result_file, "w") as fp: |
|
json.dump(jsons, fp, indent=2) |
|
print("Infer %d examples into %s" % (len(jsons), result_file)) |
|
return result_file |
|
|
|
|
|
|
|
|
|
def coco_caption_eval(gt_dir, results_file, split): |
|
from pycocotools.coco import COCO |
|
from pycocoevalcap.eval import COCOEvalCap |
|
from torchvision.datasets.utils import download_url |
|
|
|
urls = {'coco_captioning_val': 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json', |
|
'coco_captioning_test': 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json', |
|
'nocaps_val': 'https://github.com/addf400/files/releases/download/beit3/nocaps_val_gt.json'} |
|
filenames = {'coco_captioning_val':'coco_karpathy_val_gt.json', |
|
'coco_captioning_test':'coco_karpathy_test_gt.json', |
|
'nocaps_val':'nocaps_val_gt.json'} |
|
|
|
download_url(urls[split], gt_dir) |
|
annotation_file = os.path.join(gt_dir, filenames[split]) |
|
|
|
|
|
coco = COCO(annotation_file) |
|
coco_result = coco.loadRes(results_file) |
|
|
|
|
|
coco_eval = COCOEvalCap(coco, coco_result) |
|
|
|
|
|
|
|
coco_eval.evaluate() |
|
|
|
res_dict = dict() |
|
for metric, score in coco_eval.eval.items(): |
|
res_dict[metric] = score |
|
|
|
return res_dict |
|
|