|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import datetime |
|
import numpy as np |
|
import time |
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
import json |
|
import os |
|
|
|
from pathlib import Path |
|
|
|
from timm.data.mixup import Mixup |
|
from timm.models import create_model |
|
from timm.utils import ModelEma |
|
from optim_factory import create_optimizer, get_parameter_groups, \ |
|
LayerDecayValueAssigner, get_is_head_flag_for_vit |
|
|
|
from engine_for_finetuning import train_one_epoch, get_handler, evaluate |
|
from datasets import create_downstream_dataset |
|
from utils import NativeScalerWithGradNormCount as NativeScaler |
|
import utils |
|
import modeling_finetune |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser('BEiT fine-tuning and evaluation script for image classification', add_help=False) |
|
|
|
|
|
parser.add_argument('--model', default='beit_base_patch16_224', type=str, metavar='MODEL', |
|
help='Name of model to train') |
|
parser.add_argument('--task', type=str, required=True, |
|
choices=['nlvr2', 'vqav2', 'flickr30k', 'coco_retrieval', 'coco_captioning', 'nocaps', 'imagenet'], |
|
help='Name of task to fine-tuning') |
|
|
|
parser.add_argument('--input_size', default=224, type=int, |
|
help='images input size') |
|
parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', |
|
help='Drop path rate (default: 0.1)') |
|
|
|
parser.add_argument('--checkpoint_activations', action='store_true', default=None, |
|
help='Enable checkpointing to save your memory.') |
|
parser.add_argument('--sentencepiece_model', type=str, required=True, |
|
help='Sentencepiece model path for the pretrained model.') |
|
parser.add_argument('--vocab_size', type=int, default=64010) |
|
parser.add_argument('--num_max_bpe_tokens', type=int, default=64) |
|
|
|
parser.add_argument('--model_ema', action='store_true', default=False) |
|
parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='') |
|
parser.add_argument('--model_ema_force_cpu', action='store_true', default=False, help='') |
|
|
|
|
|
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', |
|
help='Optimizer (default: "adamw"') |
|
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', |
|
help='Optimizer Epsilon (default: 1e-8)') |
|
parser.add_argument('--opt_betas', default=[0.9, 0.999], type=float, nargs='+', metavar='BETA', |
|
help='Optimizer Betas (default: 0.9, 0.999, use opt default)') |
|
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', |
|
help='Clip gradient norm (default: None, no clipping)') |
|
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', |
|
help='SGD momentum (default: 0.9)') |
|
parser.add_argument('--weight_decay', type=float, default=0.05, |
|
help='weight decay (default: 0.05)') |
|
|
|
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', |
|
help='learning rate (default: 5e-4)') |
|
parser.add_argument('--layer_decay', type=float, default=0.9) |
|
parser.add_argument('--task_head_lr_weight', type=float, default=0) |
|
|
|
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', |
|
help='warmup learning rate (default: 1e-6)') |
|
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', |
|
help='lower lr bound for cyclic schedulers that hit 0 (1e-6)') |
|
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', |
|
help='epochs to warmup LR, if scheduler supports') |
|
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', |
|
help='num of steps to warmup LR, will overload warmup_epochs if set > 0') |
|
|
|
parser.add_argument('--batch_size', default=64, type=int) |
|
parser.add_argument('--eval_batch_size', default=None, type=int) |
|
parser.add_argument('--epochs', default=20, type=int) |
|
parser.add_argument('--update_freq', default=1, type=int) |
|
parser.add_argument('--save_ckpt_freq', default=5, type=int) |
|
|
|
|
|
parser.add_argument('--randaug', action='store_true', default=False) |
|
parser.add_argument('--train_interpolation', type=str, default='bicubic', |
|
help='Training interpolation (random, bilinear, bicubic default: "bicubic")') |
|
|
|
|
|
parser.add_argument('--finetune', default='', |
|
help='finetune from checkpoint') |
|
parser.add_argument('--model_key', default='model|module', type=str) |
|
parser.add_argument('--model_prefix', default='', type=str) |
|
|
|
|
|
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, |
|
help='dataset path') |
|
|
|
parser.add_argument('--output_dir', default='', |
|
help='path where to save, empty for no saving') |
|
parser.add_argument('--log_dir', default=None, |
|
help='path where to tensorboard log') |
|
parser.add_argument('--device', default='cuda', |
|
help='device to use for training / testing') |
|
parser.add_argument('--seed', default=0, type=int) |
|
parser.add_argument('--resume', default='', |
|
help='resume from checkpoint') |
|
parser.add_argument('--auto_resume', action='store_true') |
|
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') |
|
parser.set_defaults(auto_resume=True) |
|
|
|
parser.add_argument('--save_ckpt', action='store_true') |
|
parser.add_argument('--no_save_ckpt', action='store_false', dest='save_ckpt') |
|
parser.set_defaults(save_ckpt=True) |
|
|
|
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', |
|
help='start epoch') |
|
parser.add_argument('--eval', action='store_true', |
|
help='Perform evaluation only') |
|
parser.add_argument('--dist_eval', action='store_true', default=False, |
|
help='Enabling distributed evaluation') |
|
parser.add_argument('--num_workers', default=10, type=int) |
|
parser.add_argument('--pin_mem', action='store_true', |
|
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') |
|
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') |
|
parser.set_defaults(pin_mem=True) |
|
|
|
|
|
parser.add_argument('--world_size', default=1, type=int, |
|
help='number of distributed processes') |
|
parser.add_argument('--local_rank', default=-1, type=int) |
|
parser.add_argument('--dist_on_itp', action='store_true') |
|
parser.add_argument('--dist_url', default='env://', |
|
help='url used to set up distributed training') |
|
|
|
|
|
parser.add_argument('--task_cache_path', default=None, type=str) |
|
|
|
|
|
parser.add_argument('--nb_classes', default=1000, type=int, |
|
help='number of the classification types') |
|
parser.add_argument('--mixup', type=float, default=0, |
|
help='mixup alpha, mixup enabled if > 0.') |
|
parser.add_argument('--cutmix', type=float, default=0, |
|
help='cutmix alpha, cutmix enabled if > 0.') |
|
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, |
|
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') |
|
parser.add_argument('--mixup_prob', type=float, default=1.0, |
|
help='Probability of performing mixup or cutmix when either/both is enabled') |
|
parser.add_argument('--mixup_switch_prob', type=float, default=0.5, |
|
help='Probability of switching to cutmix when both mixup and cutmix enabled') |
|
parser.add_argument('--mixup_mode', type=str, default='batch', |
|
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') |
|
|
|
|
|
parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT', |
|
help='Color jitter factor (default: 0.4)') |
|
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', |
|
help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)') |
|
parser.add_argument('--smoothing', type=float, default=0.1, |
|
help='Label smoothing (default: 0.1)') |
|
|
|
|
|
parser.add_argument('--crop_pct', type=float, default=None) |
|
|
|
|
|
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', |
|
help='Random erase prob (default: 0.25)') |
|
parser.add_argument('--remode', type=str, default='pixel', |
|
help='Random erase mode (default: "pixel")') |
|
parser.add_argument('--recount', type=int, default=1, |
|
help='Random erase count (default: 1)') |
|
parser.add_argument('--resplit', action='store_true', default=False, |
|
help='Do not random erase first (clean) augmentation split') |
|
|
|
|
|
parser.add_argument('--captioning_mask_prob', type=float, default=0.6) |
|
parser.add_argument('--drop_worst_ratio', type=float, default=0.2) |
|
parser.add_argument('--drop_worst_after', type=int, default=12000) |
|
parser.add_argument('--num_beams', type=int, default=3) |
|
parser.add_argument('--length_penalty', type=float, default=0.6) |
|
|
|
|
|
parser.add_argument('--label_smoothing', type=float, default=0.1) |
|
|
|
|
|
parser.add_argument('--enable_deepspeed', action='store_true', default=False) |
|
parser.add_argument('--initial_scale_power', type=int, default=16) |
|
parser.add_argument('--zero_stage', default=0, type=int, |
|
help='ZeRO optimizer stage (default: 0)') |
|
|
|
known_args, _ = parser.parse_known_args() |
|
|
|
if known_args.enable_deepspeed: |
|
try: |
|
import deepspeed |
|
from deepspeed import DeepSpeedConfig |
|
parser = deepspeed.add_config_arguments(parser) |
|
ds_init = deepspeed.initialize |
|
except: |
|
print("Please 'pip install deepspeed==0.4.0'") |
|
exit(0) |
|
else: |
|
ds_init = None |
|
|
|
return parser.parse_args(), ds_init |
|
|
|
|
|
def main(args, ds_init): |
|
utils.init_distributed_mode(args) |
|
|
|
if ds_init is not None: |
|
utils.create_ds_config(args) |
|
|
|
if args.task_cache_path is None: |
|
args.task_cache_path = args.output_dir |
|
|
|
print(args) |
|
|
|
device = torch.device(args.device) |
|
|
|
|
|
seed = args.seed + utils.get_rank() |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
|
|
|
|
cudnn.benchmark = True |
|
|
|
if utils.get_rank() == 0 and args.log_dir is not None: |
|
os.makedirs(args.log_dir, exist_ok=True) |
|
log_writer = utils.TensorboardLogger(log_dir=args.log_dir) |
|
else: |
|
log_writer = None |
|
|
|
data_loader_train, data_loader_val = create_downstream_dataset(args) |
|
|
|
if not args.model.endswith(args.task): |
|
if args.task in ("flickr30k", "coco_retrieval"): |
|
model_config = "%s_retrieval" % args.model |
|
elif args.task in ("coco_captioning", "nocaps"): |
|
model_config = "%s_captioning" % args.model |
|
elif args.task in ("imagenet"): |
|
model_config = "%s_imageclassification" % args.model |
|
else: |
|
model_config = "%s_%s" % (args.model, args.task) |
|
else: |
|
model_config = args.model |
|
print("model_config = %s" % model_config) |
|
model = create_model( |
|
model_config, |
|
pretrained=False, |
|
drop_path_rate=args.drop_path, |
|
vocab_size=args.vocab_size, |
|
checkpoint_activations=args.checkpoint_activations, |
|
) |
|
|
|
if args.finetune: |
|
utils.load_model_and_may_interpolate(args.finetune, model, args.model_key, args.model_prefix) |
|
|
|
model.to(device) |
|
|
|
model_ema = None |
|
if args.model_ema: |
|
|
|
model_ema = ModelEma( |
|
model, |
|
decay=args.model_ema_decay, |
|
device='cpu' if args.model_ema_force_cpu else '', |
|
resume='') |
|
print("Using EMA with decay = %.8f" % args.model_ema_decay) |
|
|
|
model_without_ddp = model |
|
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
|
print("Model = %s" % str(model_without_ddp)) |
|
print('number of params:', n_parameters) |
|
|
|
total_batch_size = args.batch_size * args.update_freq * utils.get_world_size() |
|
num_training_steps_per_epoch = len(data_loader_train.dataset) // total_batch_size |
|
print("LR = %.8f" % args.lr) |
|
print("Batch size = %d" % total_batch_size) |
|
print("Update frequent = %d" % args.update_freq) |
|
print("Number of training examples = %d" % len(data_loader_train.dataset)) |
|
print("Number of training training per epoch = %d" % num_training_steps_per_epoch) |
|
|
|
num_layers = model_without_ddp.get_num_layers() |
|
if args.layer_decay < 1.0: |
|
lrs = list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2)) |
|
assigner = LayerDecayValueAssigner(lrs) |
|
elif args.task_head_lr_weight > 1: |
|
assigner = LayerDecayValueAssigner([1.0, args.task_head_lr_weight], scale_handler=get_is_head_flag_for_vit) |
|
else: |
|
assigner = None |
|
|
|
if assigner is not None: |
|
print("Assigned values = %s" % str(assigner.values)) |
|
|
|
skip_weight_decay_list = model.no_weight_decay() |
|
|
|
if args.distributed: |
|
torch.distributed.barrier() |
|
if args.enable_deepspeed: |
|
loss_scaler = None |
|
optimizer_params = get_parameter_groups( |
|
model, args.weight_decay, skip_weight_decay_list, |
|
assigner.get_layer_id if assigner is not None else None, |
|
assigner.get_scale if assigner is not None else None) |
|
model, optimizer, _, _ = ds_init( |
|
args=args, model=model, model_parameters=optimizer_params, |
|
dist_init_required=not args.distributed, |
|
) |
|
|
|
print("model.gradient_accumulation_steps() = %d" % model.gradient_accumulation_steps()) |
|
assert model.gradient_accumulation_steps() == args.update_freq |
|
else: |
|
if args.distributed: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) |
|
model_without_ddp = model.module |
|
|
|
optimizer = create_optimizer( |
|
args, model_without_ddp, skip_list=skip_weight_decay_list, |
|
get_num_layer=assigner.get_layer_id if assigner is not None else None, |
|
get_layer_scale=assigner.get_scale if assigner is not None else None) |
|
loss_scaler = NativeScaler() |
|
|
|
lr_schedule_values = utils.cosine_scheduler( |
|
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, |
|
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, |
|
) |
|
|
|
utils.auto_load_model( |
|
args=args, model=model, model_without_ddp=model_without_ddp, |
|
optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema) |
|
|
|
task_handler = get_handler(args) |
|
|
|
|
|
mixup_fn = None |
|
if args.task in ["imagenet", "in1k"]: |
|
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None |
|
if mixup_active: |
|
print("Mixup is activated!") |
|
mixup_fn = Mixup( |
|
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, |
|
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, |
|
label_smoothing=args.label_smoothing, num_classes=args.nb_classes) |
|
|
|
if args.eval: |
|
data_loader_test = create_downstream_dataset(args, is_eval=True) |
|
if args.task in ["nlvr2", "flickr30k", "coco_retrieval", "imagenet"]: |
|
ext_test_stats, task_key = evaluate(data_loader_test, model, device, task_handler) |
|
print(f"Accuracy of the network on the {len(data_loader_test.dataset)} test images: {ext_test_stats[task_key]:.3f}%") |
|
exit(0) |
|
elif args.task == "vqav2": |
|
result, _ = evaluate(data_loader_test, model, device, task_handler) |
|
utils.dump_predictions(args, result, "vqav2_test") |
|
exit(0) |
|
elif args.task in ["coco_captioning", "nocaps"]: |
|
predictions, _ = evaluate(data_loader_test, model, device, task_handler) |
|
prediction_file = utils.dump_predictions(args, predictions, "{}_test".format(args.task)) |
|
if utils.is_main_process() and args.task == "coco_captioning": |
|
captioning_result = utils.coco_caption_eval(args.output_dir, prediction_file, "{}_test".format(args.task)) |
|
result_file = os.path.join(args.output_dir, f"{args.task}_result.json") |
|
print(json.dumps(captioning_result)) |
|
utils.write_result_to_jsonl(captioning_result, result_file) |
|
exit(0) |
|
|
|
print(f"Start training for {args.epochs} epochs") |
|
start_time = time.time() |
|
|
|
max_accuracy = 0.0 |
|
for epoch in range(args.start_epoch, args.epochs): |
|
if args.distributed: |
|
data_loader_train.sampler.set_epoch(epoch) |
|
if log_writer is not None: |
|
log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq) |
|
train_stats = train_one_epoch( |
|
model, data_loader_train, optimizer, device, task_handler, epoch, |
|
epoch * num_training_steps_per_epoch, lr_schedule_values, loss_scaler, |
|
args.clip_grad, args.update_freq, model_ema, log_writer, args.task, mixup_fn, |
|
) |
|
if args.output_dir and args.save_ckpt: |
|
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: |
|
utils.save_model( |
|
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, |
|
loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema) |
|
if data_loader_val is not None: |
|
if args.task not in ["coco_captioning", "nocaps"]: |
|
test_stats, task_key = evaluate(data_loader_val, model, device, task_handler) |
|
else: |
|
predictions, _ = evaluate(data_loader_val, model, device, task_handler) |
|
prediction_file = utils.dump_predictions(args, predictions, f"{args.task}_val_e{epoch}") |
|
result_file = os.path.join(args.output_dir, f"{args.task}_result_val_e{epoch}.json") |
|
task_key = "CIDEr" |
|
if utils.is_main_process(): |
|
test_stats = utils.coco_caption_eval(args.output_dir, prediction_file, "{}_val".format(args.task)) |
|
utils.write_result_to_jsonl(test_stats, result_file) |
|
torch.distributed.barrier() |
|
if not utils.is_main_process(): |
|
test_stats = utils.read_result_from_jsonl(result_file) |
|
|
|
print(f"Performance of the network on the {len(data_loader_val.dataset)} val images: {test_stats[task_key]:.1f}%") |
|
if max_accuracy < test_stats[task_key]: |
|
max_accuracy = test_stats[task_key] |
|
if args.output_dir and args.save_ckpt: |
|
utils.save_model( |
|
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, |
|
loss_scaler=loss_scaler, epoch="best", model_ema=model_ema) |
|
|
|
print(f'Max performance: {max_accuracy:.2f}%') |
|
if log_writer is not None: |
|
log_writer.update(acc=test_stats[task_key], head="perf", step=epoch) |
|
|
|
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, |
|
**{f'val_{k}': v for k, v in test_stats.items()}, |
|
'epoch': epoch, |
|
'n_parameters': n_parameters} |
|
else: |
|
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, |
|
|
|
'epoch': epoch, |
|
'n_parameters': n_parameters} |
|
|
|
if args.output_dir and utils.is_main_process(): |
|
if log_writer is not None: |
|
log_writer.flush() |
|
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: |
|
f.write(json.dumps(log_stats) + "\n") |
|
|
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('Training time {}'.format(total_time_str)) |
|
|
|
|
|
if __name__ == '__main__': |
|
opts, ds_init = get_args() |
|
if opts.output_dir: |
|
Path(opts.output_dir).mkdir(parents=True, exist_ok=True) |
|
main(opts, ds_init) |
|
|