|
import os |
|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from pycocotools import mask |
|
|
|
from model.segment_anything.utils.transforms import ResizeLongestSide |
|
|
|
from .grefer import G_REFER |
|
from .refer import REFER |
|
from torchvision import transforms |
|
|
|
|
|
class ReferSegDataset(torch.utils.data.Dataset): |
|
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) |
|
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) |
|
img_size = 1024 |
|
ignore_label = 255 |
|
|
|
def __init__( |
|
self, |
|
base_image_dir, |
|
tokenizer, |
|
samples_per_epoch=500 * 8 * 2 * 10, |
|
precision: str = "fp32", |
|
image_size: int = 224, |
|
num_classes_per_sample: int = 3, |
|
exclude_val=False, |
|
refer_seg_data="refclef||refcoco||refcoco+||refcocog", |
|
model_type="ori", |
|
transform=ResizeLongestSide(1024), |
|
): |
|
self.model_type = model_type |
|
self.exclude_val = exclude_val |
|
self.samples_per_epoch = samples_per_epoch |
|
self.num_classes_per_sample = num_classes_per_sample |
|
|
|
self.base_image_dir = base_image_dir |
|
self.tokenizer = tokenizer |
|
self.precision = precision |
|
self.transform = transform |
|
self.image_preprocessor = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Resize((image_size, image_size), interpolation=3), |
|
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) |
|
]) |
|
|
|
DATA_DIR = os.path.join(base_image_dir, "refer_seg") |
|
self.refer_seg_ds_list = refer_seg_data.split( |
|
"||" |
|
) |
|
self.refer_seg_data = {} |
|
for ds in self.refer_seg_ds_list: |
|
if ds == "refcocog": |
|
splitBy = "umd" |
|
else: |
|
splitBy = "unc" |
|
|
|
if ds == "grefcoco": |
|
refer_api = G_REFER(DATA_DIR, ds, splitBy) |
|
else: |
|
refer_api = REFER(DATA_DIR, ds, splitBy) |
|
|
|
ref_ids_train = refer_api.getRefIds(split="train") |
|
images_ids_train = refer_api.getImgIds(ref_ids=ref_ids_train) |
|
refs_train = refer_api.loadRefs(ref_ids=ref_ids_train) |
|
|
|
refer_seg_ds = {} |
|
refer_seg_ds["images"] = [] |
|
loaded_images = refer_api.loadImgs(image_ids=images_ids_train) |
|
|
|
for item in loaded_images: |
|
item = item.copy() |
|
if ds == "refclef": |
|
item["file_name"] = os.path.join( |
|
DATA_DIR, "images/saiapr_tc-12", item["file_name"] |
|
) |
|
else: |
|
item["file_name"] = os.path.join( |
|
DATA_DIR, "images/mscoco/images/train2014", item["file_name"] |
|
) |
|
refer_seg_ds["images"].append(item) |
|
refer_seg_ds["annotations"] = refer_api.Anns |
|
|
|
print( |
|
"dataset {} (refs {}) (train split) has {} images and {} annotations.".format( |
|
ds, |
|
splitBy, |
|
len(refer_seg_ds["images"]), |
|
len(refer_seg_ds["annotations"]), |
|
) |
|
) |
|
|
|
img2refs = {} |
|
for ref in refs_train: |
|
image_id = ref["image_id"] |
|
img2refs[image_id] = img2refs.get(image_id, []) + [ |
|
ref, |
|
] |
|
refer_seg_ds["img2refs"] = img2refs |
|
self.refer_seg_data[ds] = refer_seg_ds |
|
|
|
def __len__(self): |
|
return self.samples_per_epoch |
|
|
|
def preprocess(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Normalize pixel values and pad to a square input.""" |
|
if self.model_type=="hq": |
|
h, w = x.shape[-2:] |
|
padh = self.img_size - h |
|
padw = self.img_size - w |
|
x = F.pad(x, (0, padw, 0, padh), value=128) |
|
|
|
|
|
x = (x - self.pixel_mean) / self.pixel_std |
|
|
|
if self.model_type=="effi": |
|
x = F.interpolate(x.unsqueeze(0), (self.img_size, self.img_size), mode="bilinear").squeeze(0) |
|
else: |
|
|
|
h, w = x.shape[-2:] |
|
padh = self.img_size - h |
|
padw = self.img_size - w |
|
x = F.pad(x, (0, padw, 0, padh)) |
|
return x |
|
|
|
def __getitem__(self, idx): |
|
ds = random.randint(0, len(self.refer_seg_ds_list) - 1) |
|
ds = self.refer_seg_ds_list[ds] |
|
refer_seg_ds = self.refer_seg_data[ds] |
|
images = refer_seg_ds["images"] |
|
annotations = refer_seg_ds["annotations"] |
|
img2refs = refer_seg_ds["img2refs"] |
|
idx = random.randint(0, len(images) - 1) |
|
image_info = images[idx] |
|
image_path = image_info["file_name"] |
|
image_id = image_info["id"] |
|
refs = img2refs[image_id] |
|
if len(refs) == 0: |
|
return self.__getitem__(0) |
|
|
|
sents = [] |
|
ann_ids = [] |
|
for ref in refs: |
|
for sent in ref["sentences"]: |
|
text = sent["sent"] |
|
sents.append(text) |
|
ann_ids.append(ref["ann_id"]) |
|
if len(sents) >= self.num_classes_per_sample: |
|
sampled_inds = np.random.choice( |
|
list(range(len(sents))), size=self.num_classes_per_sample, replace=False |
|
) |
|
else: |
|
sampled_inds = list(range(len(sents))) |
|
sampled_sents = np.vectorize(sents.__getitem__)(sampled_inds).tolist() |
|
|
|
sampled_ann_ids = [ann_ids[ind] for ind in sampled_inds] |
|
sampled_classes = sampled_sents |
|
image = cv2.imread(image_path) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
image_evf = self.image_preprocessor(image) |
|
|
|
image = self.transform.apply_image(image) |
|
resize = image.shape[:2] |
|
|
|
image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous()) |
|
|
|
flag = False |
|
masks = [] |
|
for ann_id in sampled_ann_ids: |
|
if isinstance(ann_id, list): |
|
flag = True |
|
if -1 in ann_id: |
|
assert len(ann_id) == 1 |
|
m = np.zeros((image_info["height"], image_info["width"])).astype( |
|
np.uint8 |
|
) |
|
else: |
|
m_final = np.zeros( |
|
(image_info["height"], image_info["width"]) |
|
).astype(np.uint8) |
|
for ann_id_i in ann_id: |
|
ann = annotations[ann_id_i] |
|
|
|
if len(ann["segmentation"]) == 0: |
|
m = np.zeros( |
|
(image_info["height"], image_info["width"]) |
|
).astype(np.uint8) |
|
else: |
|
if type(ann["segmentation"][0]) == list: |
|
rle = mask.frPyObjects( |
|
ann["segmentation"], |
|
image_info["height"], |
|
image_info["width"], |
|
) |
|
else: |
|
rle = ann["segmentation"] |
|
for i in range(len(rle)): |
|
if not isinstance(rle[i]["counts"], bytes): |
|
rle[i]["counts"] = rle[i]["counts"].encode() |
|
m = mask.decode(rle) |
|
m = np.sum( |
|
m, axis=2 |
|
) |
|
m = m.astype(np.uint8) |
|
m_final = m_final | m |
|
m = m_final |
|
masks.append(m) |
|
continue |
|
|
|
ann = annotations[ann_id] |
|
|
|
if len(ann["segmentation"]) == 0: |
|
m = np.zeros((image_info["height"], image_info["width"])).astype( |
|
np.uint8 |
|
) |
|
masks.append(m) |
|
continue |
|
|
|
if type(ann["segmentation"][0]) == list: |
|
rle = mask.frPyObjects( |
|
ann["segmentation"], image_info["height"], image_info["width"] |
|
) |
|
else: |
|
rle = ann["segmentation"] |
|
for i in range(len(rle)): |
|
if not isinstance(rle[i]["counts"], bytes): |
|
rle[i]["counts"] = rle[i]["counts"].encode() |
|
m = mask.decode(rle) |
|
m = np.sum( |
|
m, axis=2 |
|
) |
|
m = m.astype(np.uint8) |
|
masks.append(m) |
|
|
|
masks = np.stack(masks, axis=0) |
|
|
|
masks = torch.from_numpy(masks) |
|
label = torch.ones(masks.shape[1], masks.shape[2]) * self.ignore_label |
|
|
|
return ( |
|
image_path, |
|
image, |
|
image_evf, |
|
masks, |
|
label, |
|
resize, |
|
sampled_classes, |
|
) |
|
|