|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from torch import optim as optim |
|
from timm.optim.lookahead import Lookahead |
|
|
|
import json |
|
|
|
|
|
def get_num_layer_for_vit(var_name, num_max_layer): |
|
if "embed" in var_name: |
|
return 0 |
|
elif var_name in ( |
|
"cls_token", "mask_token", "pos_embed", "language_pos_embed", |
|
"word_embeddings.weight", "vision_cls_token", "vision_pos_embed" |
|
): |
|
return 0 |
|
elif var_name.startswith("patch_embed"): |
|
return 0 |
|
elif var_name.startswith("rel_pos_bias"): |
|
return num_max_layer - 1 |
|
elif "layers." in var_name: |
|
layer_id = int(var_name.split('layers.')[1].split('.')[0]) |
|
return layer_id + 1 |
|
else: |
|
return num_max_layer - 1 |
|
|
|
|
|
def get_is_head_flag_for_vit(var_name, num_max_layer): |
|
if var_name.startswith("head"): |
|
return 1 |
|
|
|
|
|
else: |
|
return 0 |
|
|
|
|
|
class LayerDecayValueAssigner(object): |
|
def __init__(self, values, scale_handler=None): |
|
self.scale_handler = scale_handler or get_num_layer_for_vit |
|
self.values = values |
|
|
|
def get_scale(self, layer_id): |
|
return self.values[layer_id] |
|
|
|
def get_layer_id(self, var_name): |
|
return self.scale_handler(var_name, len(self.values)) |
|
|
|
|
|
|
|
def get_parameter_groups(model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None): |
|
parameter_group_names = {} |
|
parameter_group_vars = {} |
|
|
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: |
|
group_name = "no_decay" |
|
this_weight_decay = 0. |
|
else: |
|
group_name = "decay" |
|
this_weight_decay = weight_decay |
|
if get_num_layer is not None: |
|
layer_id = get_num_layer(name) |
|
group_name = "layer_%d_%s" % (layer_id, group_name) |
|
else: |
|
layer_id = None |
|
|
|
if group_name not in parameter_group_names: |
|
if get_layer_scale is not None: |
|
scale = get_layer_scale(layer_id) |
|
else: |
|
scale = 1. |
|
|
|
parameter_group_names[group_name] = { |
|
"weight_decay": this_weight_decay, |
|
"params": [], |
|
"lr_scale": scale |
|
} |
|
parameter_group_vars[group_name] = { |
|
"weight_decay": this_weight_decay, |
|
"params": [], |
|
"lr_scale": scale |
|
} |
|
|
|
parameter_group_vars[group_name]["params"].append(param) |
|
parameter_group_names[group_name]["params"].append(name) |
|
print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) |
|
return list(parameter_group_vars.values()) |
|
|
|
|
|
def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None): |
|
opt_lower = args.opt.lower() |
|
weight_decay = args.weight_decay |
|
if weight_decay and filter_bias_and_bn: |
|
skip = {} |
|
if skip_list is not None: |
|
skip = skip_list |
|
elif hasattr(model, 'no_weight_decay'): |
|
skip = model.no_weight_decay() |
|
parameters = get_parameter_groups(model, weight_decay, skip, get_num_layer, get_layer_scale) |
|
weight_decay = 0. |
|
else: |
|
parameters = model.parameters() |
|
|
|
opt_args = dict(lr=args.lr, weight_decay=weight_decay) |
|
if hasattr(args, 'opt_eps') and args.opt_eps is not None: |
|
opt_args['eps'] = args.opt_eps |
|
if hasattr(args, 'opt_betas') and args.opt_betas is not None: |
|
opt_args['betas'] = args.opt_betas |
|
|
|
opt_split = opt_lower.split('_') |
|
opt_lower = opt_split[-1] |
|
if opt_lower == 'adamw': |
|
optimizer = optim.AdamW(parameters, **opt_args) |
|
else: |
|
raise ValueError("Invalid optimizer") |
|
|
|
if len(opt_split) > 1: |
|
if opt_split[0] == 'lookahead': |
|
optimizer = Lookahead(optimizer) |
|
|
|
return optimizer |
|
|