|
from typing import List, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers import PreTrainedModel, AutoConfig, AutoModelForCausalLM |
|
from .EfficientSAM.efficient_sam.build_efficient_sam import build_efficient_sam_vits, build_efficient_sam_vitt |
|
from .unilm.beit3.modeling_utils import BEiT3Wrapper, _get_base_config, _get_large_config |
|
from .configuration_evf import EvfConfig |
|
|
|
|
|
def dice_loss( |
|
inputs: torch.Tensor, |
|
targets: torch.Tensor, |
|
num_masks: float, |
|
scale=1000, |
|
eps=1e-6, |
|
): |
|
""" |
|
Compute the DICE loss, similar to generalized IOU for masks |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
""" |
|
inputs = inputs.sigmoid() |
|
inputs = inputs.flatten(1, 2) |
|
targets = targets.flatten(1, 2) |
|
numerator = 2 * (inputs / scale * targets).sum(-1) |
|
denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1) |
|
loss = 1 - (numerator + eps) / (denominator + eps) |
|
loss = loss.sum() / (num_masks + 1e-8) |
|
return loss |
|
|
|
|
|
def sigmoid_ce_loss( |
|
inputs: torch.Tensor, |
|
targets: torch.Tensor, |
|
num_masks: float, |
|
): |
|
""" |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
Returns: |
|
Loss tensor |
|
""" |
|
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") |
|
loss = loss.flatten(1, 2).mean(1).sum() / (num_masks + 1e-8) |
|
return loss |
|
|
|
|
|
|
|
class EvfEffiSamModel(PreTrainedModel): |
|
config_class = EvfConfig |
|
def __init__( |
|
self, |
|
config, |
|
**kwargs |
|
): |
|
super(EvfEffiSamModel, self).__init__(config) |
|
|
|
self.config = config |
|
self.vision_pretrained = kwargs.get("vision_pretrained", None) |
|
self.encoder_pretrained = kwargs.get("encoder_pretrained", None) |
|
self.dice_loss_weight = kwargs.get("dice_loss_weight", None) |
|
self.bce_loss_weight = kwargs.get("bce_loss_weight", None) |
|
self.train_mask_decoder = kwargs.get("train_mask_decoder", False) |
|
self.initialize_evf_modules(config) |
|
|
|
|
|
def initialize_evf_modules(self, config): |
|
|
|
if config.sam_scale=="tiny": |
|
self.visual_model = build_efficient_sam_vitt(self.vision_pretrained) |
|
elif config.sam_scale=="small": |
|
|
|
self.visual_model = build_efficient_sam_vits(self.vision_pretrained) |
|
else: |
|
raise NotImplementedError |
|
|
|
for param in self.visual_model.parameters(): |
|
param.requires_grad = False |
|
if self.train_mask_decoder: |
|
self.visual_model.mask_decoder.train() |
|
for param in self.visual_model.mask_decoder.parameters(): |
|
param.requires_grad = True |
|
|
|
|
|
if self.config.mm_extractor_scale == "base": |
|
beit_config = _get_base_config() |
|
elif self.config.mm_extractor_scale == "large": |
|
beit_config = _get_large_config() |
|
else: |
|
raise AttributeError(f"model config should contain key 'mm_extractor_scale', with value 'base' or 'large'.") |
|
|
|
self.mm_extractor = BEiT3Wrapper(beit_config) |
|
if self.encoder_pretrained is not None: |
|
beit_state_dict = torch.load(self.encoder_pretrained)["model"] |
|
self.mm_extractor.load_state_dict( |
|
beit_state_dict, |
|
strict=False |
|
) |
|
|
|
for param in self.mm_extractor.parameters(): |
|
param.requires_grad = True |
|
|
|
|
|
in_dim = config.hidden_size |
|
assert in_dim==beit_config.encoder_embed_dim, \ |
|
f"projection layer dim {in_dim} mismatch with mm_extractor dim {beit_config.encoder_embed_dim}" |
|
out_dim = config.out_dim |
|
text_fc = [ |
|
nn.Linear(in_dim, in_dim), |
|
nn.ReLU(), |
|
nn.Linear(in_dim, out_dim) |
|
] |
|
self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_fc)]) |
|
self.text_hidden_fcs.train() |
|
for param in self.text_hidden_fcs.parameters(): |
|
param.requires_grad = True |
|
|
|
def get_visual_embs(self, pixel_values: torch.Tensor): |
|
with torch.no_grad(): |
|
image_embeddings_list = [] |
|
for i in range(pixel_values.shape[0]): |
|
torch.cuda.empty_cache() |
|
image_embeddings = self.visual_model.image_encoder( |
|
pixel_values[i].unsqueeze(0) |
|
) |
|
image_embeddings_list.append(image_embeddings) |
|
torch.cuda.empty_cache() |
|
image_embeddings = torch.cat(image_embeddings_list, 0) |
|
return image_embeddings |
|
|
|
def forward( |
|
self, |
|
images: torch.Tensor, |
|
images_evf: torch.Tensor, |
|
input_ids: torch.Tensor, |
|
attention_masks: torch.Tensor, |
|
offset: torch.Tensor, |
|
masks_list: List[torch.Tensor], |
|
label_list: List[torch.Tensor], |
|
resize_list: List[tuple], |
|
inference: bool = False, |
|
**kwargs, |
|
): |
|
image_embeddings = self.get_visual_embs(images) |
|
batch_size = image_embeddings.shape[0] |
|
assert batch_size == len(offset) - 1 |
|
|
|
images_evf_list = [] |
|
for i in range(len(offset) - 1): |
|
start_i, end_i = offset[i], offset[i + 1] |
|
images_evf_i = ( |
|
images_evf[i] |
|
.unsqueeze(0) |
|
.expand(end_i - start_i, -1, -1, -1) |
|
.contiguous() |
|
) |
|
images_evf_list.append(images_evf_i) |
|
images_evf = torch.cat(images_evf_list, dim=0) |
|
|
|
multimask_output = False |
|
output = self.mm_extractor.beit3( |
|
visual_tokens=images_evf, |
|
textual_tokens=input_ids, |
|
text_padding_position=~attention_masks |
|
) |
|
|
|
feat = output["encoder_out"][:, :1, ...] |
|
|
|
feat = self.text_hidden_fcs[0](feat) |
|
feat = torch.split(feat, [offset[i+1] - offset[i] for i in range(len(offset)-1)]) |
|
|
|
pred_masks = [] |
|
for i in range(len(feat)): |
|
sparse_embeddings = feat[i].unsqueeze(0) |
|
sparse_embeddings = sparse_embeddings.to(feat[i].dtype) |
|
low_res_masks, iou_predictions = self.visual_model.mask_decoder( |
|
image_embeddings=image_embeddings[i].unsqueeze(0), |
|
image_pe=self.visual_model.prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=sparse_embeddings, |
|
multimask_output=multimask_output, |
|
) |
|
|
|
if multimask_output: |
|
sorted_ids = torch.argsort(iou_predictions, dim=-1, descending=True) |
|
low_res_masks = torch.take_along_dim(low_res_masks, sorted_ids[..., None, None], dim=1) |
|
|
|
pred_mask = self.postprocess_masks( |
|
low_res_masks[:, :1], |
|
input_size=resize_list[i], |
|
original_size=label_list[i].shape, |
|
) |
|
pred_masks.append(pred_mask[:, 0]) |
|
|
|
gt_masks = masks_list |
|
|
|
if inference: |
|
return { |
|
"pred_masks": pred_masks, |
|
"gt_masks": gt_masks, |
|
} |
|
|
|
mask_bce_loss = 0 |
|
mask_dice_loss = 0 |
|
num_masks = 0 |
|
for batch_idx in range(len(pred_masks)): |
|
gt_mask = gt_masks[batch_idx] |
|
pred_mask = pred_masks[batch_idx] |
|
|
|
assert ( |
|
gt_mask.shape[0] == pred_mask.shape[0] |
|
), "gt_mask.shape: {}, pred_mask.shape: {}".format( |
|
gt_mask.shape, pred_mask.shape |
|
) |
|
mask_bce_loss += ( |
|
sigmoid_ce_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0]) |
|
* gt_mask.shape[0] |
|
) |
|
mask_dice_loss += ( |
|
dice_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0]) |
|
* gt_mask.shape[0] |
|
) |
|
num_masks += gt_mask.shape[0] |
|
|
|
mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8) |
|
mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8) |
|
mask_loss = mask_bce_loss + mask_dice_loss |
|
|
|
loss = mask_loss |
|
|
|
return { |
|
"loss": loss, |
|
"mask_bce_loss": mask_bce_loss, |
|
"mask_dice_loss": mask_dice_loss, |
|
"mask_loss": mask_loss, |
|
} |
|
|
|
def postprocess_masks( |
|
self, |
|
masks: torch.Tensor, |
|
input_size: Tuple[int, ...], |
|
original_size: Tuple[int, ...], |
|
) -> torch.Tensor: |
|
""" |
|
pre-process of Effi-SAM is different from SAM, where there is no padding, |
|
so cropping is not needed in post-process. |
|
""" |
|
|
|
dtype = masks.dtype |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
masks = F.interpolate( |
|
masks, original_size, mode="bilinear", align_corners=False |
|
) |
|
masks = masks.to(dtype) |
|
return masks |
|
|
|
def inference( |
|
self, |
|
images, |
|
images_evf, |
|
input_ids, |
|
resize_list, |
|
original_size_list, |
|
multimask_output=False, |
|
): |
|
with torch.no_grad(): |
|
image_embeddings = self.visual_model.image_encoder(images) |
|
|
|
output = self.mm_extractor.beit3(visual_tokens=images_evf, textual_tokens=input_ids, text_padding_position=torch.zeros_like(input_ids)) |
|
|
|
feat = output["encoder_out"][:, :1, ...] |
|
feat = self.text_hidden_fcs[0](feat) |
|
sparse_embeddings = feat.unsqueeze(0) |
|
sparse_embeddings = sparse_embeddings.to(feat.dtype) |
|
low_res_masks, iou_predictions = self.visual_model.mask_decoder( |
|
image_embeddings=image_embeddings, |
|
image_pe=self.visual_model.prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=sparse_embeddings, |
|
multimask_output=multimask_output, |
|
) |
|
if multimask_output: |
|
sorted_ids = torch.argsort(iou_predictions, dim=-1, descending=True) |
|
low_res_masks = torch.take_along_dim(low_res_masks, sorted_ids[..., None, None], dim=1) |
|
|
|
pred_mask = self.postprocess_masks( |
|
low_res_masks[:, :1], |
|
input_size=resize_list[0], |
|
original_size=original_size_list[0], |
|
) |
|
|
|
return pred_mask[:, 0] |
|
|
|
|
|
AutoConfig.register("evf", EvfConfig) |
|
AutoModelForCausalLM.register(EvfConfig, EvfEffiSamModel) |
|
|