|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
|
|
import torch |
|
from hydra import compose |
|
from hydra.utils import instantiate |
|
from omegaconf import OmegaConf |
|
|
|
def build_sam2( |
|
config_file, |
|
ckpt_path=None, |
|
device="cuda", |
|
mode="eval", |
|
hydra_overrides_extra=[], |
|
apply_postprocessing=True, |
|
): |
|
|
|
if apply_postprocessing: |
|
hydra_overrides_extra = hydra_overrides_extra.copy() |
|
hydra_overrides_extra += [ |
|
|
|
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", |
|
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", |
|
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", |
|
] |
|
|
|
cfg = compose(config_name=config_file, overrides=hydra_overrides_extra) |
|
OmegaConf.resolve(cfg) |
|
model = instantiate(cfg.model, _recursive_=True) |
|
_load_checkpoint(model, ckpt_path) |
|
if device: |
|
model = model.to(device) |
|
if mode == "eval": |
|
model.eval() |
|
return model |
|
|
|
|
|
def build_sam2_video_predictor( |
|
config_file, |
|
ckpt_path=None, |
|
device="cuda", |
|
mode="eval", |
|
hydra_overrides_extra=[], |
|
apply_postprocessing=True, |
|
): |
|
hydra_overrides = [ |
|
"++model._target_=model.segment_anything_2.sam2.sam2_video_predictor.SAM2VideoPredictor", |
|
] |
|
if apply_postprocessing: |
|
hydra_overrides_extra = hydra_overrides_extra.copy() |
|
hydra_overrides_extra += [ |
|
|
|
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", |
|
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", |
|
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", |
|
|
|
"++model.binarize_mask_from_pts_for_mem_enc=true", |
|
|
|
"++model.fill_hole_area=8", |
|
] |
|
hydra_overrides.extend(hydra_overrides_extra) |
|
|
|
|
|
cfg = compose(config_name=config_file, overrides=hydra_overrides) |
|
OmegaConf.resolve(cfg) |
|
model = instantiate(cfg.model, _recursive_=True) |
|
_load_checkpoint(model, ckpt_path) |
|
if device: |
|
model = model.to(device) |
|
if mode == "eval": |
|
model.eval() |
|
return model |
|
|
|
|
|
def _load_checkpoint(model, ckpt_path): |
|
if ckpt_path is not None: |
|
sd = torch.load(ckpt_path, map_location="cpu")["model"] |
|
missing_keys, unexpected_keys = model.load_state_dict(sd) |
|
if missing_keys: |
|
logging.error(missing_keys) |
|
raise RuntimeError() |
|
if unexpected_keys: |
|
logging.error(unexpected_keys) |
|
raise RuntimeError() |
|
logging.info("Loaded checkpoint sucessfully") |
|
|