File size: 8,364 Bytes
507a90d
7155b30
5e769e6
3a33785
507a90d
3a33785
98a4644
9095b80
98a4644
9095b80
 
98a4644
 
 
7155b30
9095b80
5e769e6
7155b30
a93afca
 
95bdec8
 
a93afca
 
95bdec8
a93afca
 
95bdec8
5e769e6
cddba21
95bdec8
a93afca
 
 
 
 
 
 
 
 
 
95bdec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a93afca
5e769e6
f06103e
a93afca
cddba21
a93afca
 
95bdec8
 
a93afca
 
95bdec8
 
a93afca
cddba21
 
a93afca
95bdec8
a93afca
 
95bdec8
a93afca
 
 
 
 
 
 
 
 
 
 
 
 
 
95bdec8
 
 
 
 
 
cddba21
95bdec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cddba21
 
95bdec8
 
 
 
 
 
 
 
 
 
 
 
9095b80
 
 
95bdec8
 
 
 
 
9095b80
95bdec8
9095b80
95bdec8
a93afca
4c769ac
 
578b68a
 
 
4c769ac
 
 
 
 
a93afca
95bdec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cddba21
 
 
 
 
 
ed5c7a1
 
 
 
 
 
f828f22
ed5c7a1
 
 
 
 
 
 
95bdec8
 
 
 
 
 
 
 
 
 
 
 
 
cddba21
 
 
 
 
 
95bdec8
ed5c7a1
 
 
 
 
 
 
 
 
 
 
 
 
95bdec8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
from pip._internal import main

# os.system('python model/segment_anything_2/setup.py build_ext --inplace')


# main(['install', 'timm==1.0.8'])
main(['install', 'setuptools==59.8.0'])
# main(['install', 'samv2'])
main(['install', 'bitsandbytes', '--upgrade'])
main(['install', 'timm==1.0.8'])
# main(['install', 'torch==2.1.2'])
# main(['install', 'numpy==1.21.6'])
import spaces
import timm
import shutil

print("installed", timm.__version__)
import gradio as gr
from inference import sam_preprocess, beit3_preprocess
from model.evf_sam2 import EvfSam2Model
from model.evf_sam2_video import EvfSam2Model as EvfSam2VideoModel
from transformers import AutoTokenizer
import torch
import cv2
import numpy as np
import sys
import tqdm

version = "YxZhang/evf-sam2-multitask"
model_type = "sam2"

tokenizer = AutoTokenizer.from_pretrained(
    version,
    padding_side="right",
    use_fast=False,
)

kwargs = {
    "torch_dtype": torch.half,
}

image_model = EvfSam2Model.from_pretrained(version,
                                           low_cpu_mem_usage=True,
                                           **kwargs)
del image_model.visual_model.memory_encoder
del image_model.visual_model.memory_attention
image_model = image_model.eval()
image_model.to('cuda')

video_model = EvfSam2VideoModel.from_pretrained(version,
                                                low_cpu_mem_usage=True,
                                                **kwargs)
video_model = video_model.eval()
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_model.to('cuda')


@spaces.GPU
@torch.no_grad()
def inference_image(image_np, prompt, semantic_type):
    original_size_list = [image_np.shape[:2]]

    image_beit = beit3_preprocess(image_np, 224).to(dtype=image_model.dtype,
                                                    device=image_model.device)

    image_sam, resize_shape = sam_preprocess(image_np, model_type=model_type)
    image_sam = image_sam.to(dtype=image_model.dtype,
                             device=image_model.device)

    if semantic_type:
        prompt = "[semantic] " + prompt
    input_ids = tokenizer(
        prompt, return_tensors="pt")["input_ids"].to(device=image_model.device)

    # infer
    pred_mask = image_model.inference(
        image_sam.unsqueeze(0),
        image_beit.unsqueeze(0),
        input_ids,
        resize_list=[resize_shape],
        original_size_list=original_size_list,
    )
    pred_mask = pred_mask.detach().cpu().numpy()[0]
    pred_mask = pred_mask > 0

    visualization = image_np.copy()
    visualization[pred_mask] = (image_np * 0.5 +
                                pred_mask[:, :, None].astype(np.uint8) *
                                np.array([50, 120, 220]) * 0.5)[pred_mask]

    return visualization / 255.0


@spaces.GPU
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.float16)
def inference_video(video_path, prompt, semantic_type):

    os.system("rm -rf demo_temp")
    os.makedirs("demo_temp/input_frames", exist_ok=True)
    os.system(
        "ffmpeg -i {} -q:v 2 -start_number 0 demo_temp/input_frames/'%05d.jpg'"
        .format(video_path))
    input_frames = sorted(os.listdir("demo_temp/input_frames"))
    image_np = cv2.imread("demo_temp/input_frames/00000.jpg")
    image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)

    height, width, channels = image_np.shape

    image_beit = beit3_preprocess(image_np, 224).to(dtype=video_model.dtype,
                                                    device=video_model.device)

    if semantic_type:
        prompt = "[semantic] " + prompt
    input_ids = tokenizer(
        prompt, return_tensors="pt")["input_ids"].to(device=video_model.device)

    # infer
    output = video_model.inference(
        "demo_temp/input_frames",
        image_beit.unsqueeze(0),
        input_ids,
    )
    # save visualization
    video_writer = cv2.VideoWriter("demo_temp/out.mp4", fourcc, 30,
                                   (width, height))
    # pbar = tqdm(input_frames)
    # pbar.set_description("generating video: ")
    for i, file in enumerate(input_frames):
        img = cv2.imread(os.path.join("demo_temp/input_frames", file))
        vis = img + np.array([0, 0, 128]) * output[i][1].transpose(1, 2, 0)
        vis = np.clip(vis, 0, 255)
        vis = np.uint8(vis)
        video_writer.write(vis)
    shutil.rmtree("demo_temp/input_frames")
    video_writer.release()

    return "demo_temp/out.mp4"


desc = """
<div><h2>EVF-SAM-2</h2>
<div><h4>EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h4>
<p>EVF-SAM extends <b>SAM-2</>'s capabilities with text-prompted segmentation, achieving high accuracy in Referring Expression Segmentation.</p></div>
<div style='display:flex; gap: 0.25rem; align-items: center'><a href="https://arxiv.org/abs/2406.20076"><img src="https://img.shields.io/badge/arXiv-Paper-red"></a><a href="https://github.com/hustvl/EVF-SAM"><img src="https://img.shields.io/badge/GitHub-Code-blue"></a></div>
"""

# desc_title_str = '<div align ="center"><img src="assets/logo.jpg" width="20%"><h3> Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3></div>'
# desc_link_str = '[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2406.20076)'

with gr.Blocks() as demo:
    gr.Markdown(desc)
    with gr.Tab(label="EVF-SAM-2-Image"):
        with gr.Row():
            input_image = gr.Image(type='numpy',
                                   label='Input Image',
                                   image_mode='RGB')
            output_image = gr.Image(type='numpy', label='Output Image')
        with gr.Row():
            image_prompt = gr.Textbox(
                label="Prompt",
                info=
                "Use a phrase or sentence to describe the object you want to segment. Currently we only support English"
            )
            submit_image = gr.Button(value='Submit',
                                     scale=1,
                                     variant='primary')
        with gr.Row():
            semantic_type_img = gr.Checkbox(
                False, 
                label="semantic level", 
                info="check this if you want to segment body parts or background or multi objects (only available with latest evf-sam checkpoint)"
            )
        submit_image.click(fn=inference_image,
                       inputs=[input_image, image_prompt, semantic_type_img],
                       outputs=output_image)
        gr.Examples(
            [
                ["assets/zebra.jpg", "zebra bottum left", False],
                ["assets/food.jpg", "the left lemon slice", False],
                ["assets/bus.jpg", "bus", True],
                ["assets/seaside_sdxl.png", "sky", True],
                ["assets/man_sdxl.png", "face", True]
            ],
            inputs=[input_image, image_prompt, semantic_type_img],
            outputs=output_image
        )
    with gr.Tab(label="EVF-SAM-2-Video"):
        with gr.Row():
            input_video = gr.Video(label='Input Video')
            output_video = gr.Video(label='Output Video')
        with gr.Row():
            video_prompt = gr.Textbox(
                label="Prompt",
                info=
                "Use a phrase or sentence to describe the object you want to segment. Currently we only support English"
            )
            submit_video = gr.Button(value='Submit',
                                     scale=1,
                                     variant='primary')
        with gr.Row():
            semantic_type_vid = gr.Checkbox(
                False, 
                label="semantic level", 
                info="check this if you want to segment body parts or background or multi objects (only available with latest evf-sam checkpoint)"
            )

    
        submit_video.click(fn=inference_video,
                        inputs=[input_video, video_prompt, semantic_type_vid],
                        outputs=output_video)
        gr.Examples(
            [
                ["assets/elephant.mp4", "sky", True],
                ["assets/dog.mp4", "dog", False],
                ["assets/cat.mp4", "cat", False]
            ],
            inputs=[input_video, video_prompt, semantic_type_vid],
            outputs=output_video
        )
demo.launch(show_error=True)