File size: 8,364 Bytes
507a90d 7155b30 5e769e6 3a33785 507a90d 3a33785 98a4644 9095b80 98a4644 9095b80 98a4644 7155b30 9095b80 5e769e6 7155b30 a93afca 95bdec8 a93afca 95bdec8 a93afca 95bdec8 5e769e6 cddba21 95bdec8 a93afca 95bdec8 a93afca 5e769e6 f06103e a93afca cddba21 a93afca 95bdec8 a93afca 95bdec8 a93afca cddba21 a93afca 95bdec8 a93afca 95bdec8 a93afca 95bdec8 cddba21 95bdec8 cddba21 95bdec8 9095b80 95bdec8 9095b80 95bdec8 9095b80 95bdec8 a93afca 4c769ac 578b68a 4c769ac a93afca 95bdec8 cddba21 ed5c7a1 f828f22 ed5c7a1 95bdec8 cddba21 95bdec8 ed5c7a1 95bdec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import os
from pip._internal import main
# os.system('python model/segment_anything_2/setup.py build_ext --inplace')
# main(['install', 'timm==1.0.8'])
main(['install', 'setuptools==59.8.0'])
# main(['install', 'samv2'])
main(['install', 'bitsandbytes', '--upgrade'])
main(['install', 'timm==1.0.8'])
# main(['install', 'torch==2.1.2'])
# main(['install', 'numpy==1.21.6'])
import spaces
import timm
import shutil
print("installed", timm.__version__)
import gradio as gr
from inference import sam_preprocess, beit3_preprocess
from model.evf_sam2 import EvfSam2Model
from model.evf_sam2_video import EvfSam2Model as EvfSam2VideoModel
from transformers import AutoTokenizer
import torch
import cv2
import numpy as np
import sys
import tqdm
version = "YxZhang/evf-sam2-multitask"
model_type = "sam2"
tokenizer = AutoTokenizer.from_pretrained(
version,
padding_side="right",
use_fast=False,
)
kwargs = {
"torch_dtype": torch.half,
}
image_model = EvfSam2Model.from_pretrained(version,
low_cpu_mem_usage=True,
**kwargs)
del image_model.visual_model.memory_encoder
del image_model.visual_model.memory_attention
image_model = image_model.eval()
image_model.to('cuda')
video_model = EvfSam2VideoModel.from_pretrained(version,
low_cpu_mem_usage=True,
**kwargs)
video_model = video_model.eval()
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_model.to('cuda')
@spaces.GPU
@torch.no_grad()
def inference_image(image_np, prompt, semantic_type):
original_size_list = [image_np.shape[:2]]
image_beit = beit3_preprocess(image_np, 224).to(dtype=image_model.dtype,
device=image_model.device)
image_sam, resize_shape = sam_preprocess(image_np, model_type=model_type)
image_sam = image_sam.to(dtype=image_model.dtype,
device=image_model.device)
if semantic_type:
prompt = "[semantic] " + prompt
input_ids = tokenizer(
prompt, return_tensors="pt")["input_ids"].to(device=image_model.device)
# infer
pred_mask = image_model.inference(
image_sam.unsqueeze(0),
image_beit.unsqueeze(0),
input_ids,
resize_list=[resize_shape],
original_size_list=original_size_list,
)
pred_mask = pred_mask.detach().cpu().numpy()[0]
pred_mask = pred_mask > 0
visualization = image_np.copy()
visualization[pred_mask] = (image_np * 0.5 +
pred_mask[:, :, None].astype(np.uint8) *
np.array([50, 120, 220]) * 0.5)[pred_mask]
return visualization / 255.0
@spaces.GPU
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.float16)
def inference_video(video_path, prompt, semantic_type):
os.system("rm -rf demo_temp")
os.makedirs("demo_temp/input_frames", exist_ok=True)
os.system(
"ffmpeg -i {} -q:v 2 -start_number 0 demo_temp/input_frames/'%05d.jpg'"
.format(video_path))
input_frames = sorted(os.listdir("demo_temp/input_frames"))
image_np = cv2.imread("demo_temp/input_frames/00000.jpg")
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
height, width, channels = image_np.shape
image_beit = beit3_preprocess(image_np, 224).to(dtype=video_model.dtype,
device=video_model.device)
if semantic_type:
prompt = "[semantic] " + prompt
input_ids = tokenizer(
prompt, return_tensors="pt")["input_ids"].to(device=video_model.device)
# infer
output = video_model.inference(
"demo_temp/input_frames",
image_beit.unsqueeze(0),
input_ids,
)
# save visualization
video_writer = cv2.VideoWriter("demo_temp/out.mp4", fourcc, 30,
(width, height))
# pbar = tqdm(input_frames)
# pbar.set_description("generating video: ")
for i, file in enumerate(input_frames):
img = cv2.imread(os.path.join("demo_temp/input_frames", file))
vis = img + np.array([0, 0, 128]) * output[i][1].transpose(1, 2, 0)
vis = np.clip(vis, 0, 255)
vis = np.uint8(vis)
video_writer.write(vis)
shutil.rmtree("demo_temp/input_frames")
video_writer.release()
return "demo_temp/out.mp4"
desc = """
<div><h2>EVF-SAM-2</h2>
<div><h4>EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h4>
<p>EVF-SAM extends <b>SAM-2</>'s capabilities with text-prompted segmentation, achieving high accuracy in Referring Expression Segmentation.</p></div>
<div style='display:flex; gap: 0.25rem; align-items: center'><a href="https://arxiv.org/abs/2406.20076"><img src="https://img.shields.io/badge/arXiv-Paper-red"></a><a href="https://github.com/hustvl/EVF-SAM"><img src="https://img.shields.io/badge/GitHub-Code-blue"></a></div>
"""
# desc_title_str = '<div align ="center"><img src="assets/logo.jpg" width="20%"><h3> Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3></div>'
# desc_link_str = '[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2406.20076)'
with gr.Blocks() as demo:
gr.Markdown(desc)
with gr.Tab(label="EVF-SAM-2-Image"):
with gr.Row():
input_image = gr.Image(type='numpy',
label='Input Image',
image_mode='RGB')
output_image = gr.Image(type='numpy', label='Output Image')
with gr.Row():
image_prompt = gr.Textbox(
label="Prompt",
info=
"Use a phrase or sentence to describe the object you want to segment. Currently we only support English"
)
submit_image = gr.Button(value='Submit',
scale=1,
variant='primary')
with gr.Row():
semantic_type_img = gr.Checkbox(
False,
label="semantic level",
info="check this if you want to segment body parts or background or multi objects (only available with latest evf-sam checkpoint)"
)
submit_image.click(fn=inference_image,
inputs=[input_image, image_prompt, semantic_type_img],
outputs=output_image)
gr.Examples(
[
["assets/zebra.jpg", "zebra bottum left", False],
["assets/food.jpg", "the left lemon slice", False],
["assets/bus.jpg", "bus", True],
["assets/seaside_sdxl.png", "sky", True],
["assets/man_sdxl.png", "face", True]
],
inputs=[input_image, image_prompt, semantic_type_img],
outputs=output_image
)
with gr.Tab(label="EVF-SAM-2-Video"):
with gr.Row():
input_video = gr.Video(label='Input Video')
output_video = gr.Video(label='Output Video')
with gr.Row():
video_prompt = gr.Textbox(
label="Prompt",
info=
"Use a phrase or sentence to describe the object you want to segment. Currently we only support English"
)
submit_video = gr.Button(value='Submit',
scale=1,
variant='primary')
with gr.Row():
semantic_type_vid = gr.Checkbox(
False,
label="semantic level",
info="check this if you want to segment body parts or background or multi objects (only available with latest evf-sam checkpoint)"
)
submit_video.click(fn=inference_video,
inputs=[input_video, video_prompt, semantic_type_vid],
outputs=output_video)
gr.Examples(
[
["assets/elephant.mp4", "sky", True],
["assets/dog.mp4", "dog", False],
["assets/cat.mp4", "cat", False]
],
inputs=[input_video, video_prompt, semantic_type_vid],
outputs=output_video
)
demo.launch(show_error=True)
|