File size: 9,446 Bytes
a93afca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import os
import random
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from pycocotools import mask
from model.segment_anything.utils.transforms import ResizeLongestSide
from .grefer import G_REFER
from .refer import REFER
from torchvision import transforms
class ReferSegDataset(torch.utils.data.Dataset):
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
img_size = 1024
ignore_label = 255
def __init__(
self,
base_image_dir,
tokenizer,
samples_per_epoch=500 * 8 * 2 * 10,
precision: str = "fp32",
image_size: int = 224,
num_classes_per_sample: int = 3,
exclude_val=False,
refer_seg_data="refclef||refcoco||refcoco+||refcocog",
model_type="ori",
transform=ResizeLongestSide(1024),
):
self.model_type = model_type
self.exclude_val = exclude_val
self.samples_per_epoch = samples_per_epoch
self.num_classes_per_sample = num_classes_per_sample
self.base_image_dir = base_image_dir
self.tokenizer = tokenizer
self.precision = precision
self.transform = transform
self.image_preprocessor = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((image_size, image_size), interpolation=3),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
DATA_DIR = os.path.join(base_image_dir, "refer_seg")
self.refer_seg_ds_list = refer_seg_data.split(
"||"
) # ['refclef', 'refcoco', 'refcoco+', 'refcocog']
self.refer_seg_data = {}
for ds in self.refer_seg_ds_list:
if ds == "refcocog":
splitBy = "umd"
else:
splitBy = "unc"
if ds == "grefcoco":
refer_api = G_REFER(DATA_DIR, ds, splitBy)
else:
refer_api = REFER(DATA_DIR, ds, splitBy)
ref_ids_train = refer_api.getRefIds(split="train")
images_ids_train = refer_api.getImgIds(ref_ids=ref_ids_train)
refs_train = refer_api.loadRefs(ref_ids=ref_ids_train)
refer_seg_ds = {}
refer_seg_ds["images"] = []
loaded_images = refer_api.loadImgs(image_ids=images_ids_train)
for item in loaded_images:
item = item.copy()
if ds == "refclef":
item["file_name"] = os.path.join(
DATA_DIR, "images/saiapr_tc-12", item["file_name"]
)
else:
item["file_name"] = os.path.join(
DATA_DIR, "images/mscoco/images/train2014", item["file_name"]
)
refer_seg_ds["images"].append(item)
refer_seg_ds["annotations"] = refer_api.Anns # anns_train
print(
"dataset {} (refs {}) (train split) has {} images and {} annotations.".format(
ds,
splitBy,
len(refer_seg_ds["images"]),
len(refer_seg_ds["annotations"]),
)
)
img2refs = {}
for ref in refs_train:
image_id = ref["image_id"]
img2refs[image_id] = img2refs.get(image_id, []) + [
ref,
]
refer_seg_ds["img2refs"] = img2refs
self.refer_seg_data[ds] = refer_seg_ds
def __len__(self):
return self.samples_per_epoch
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
if self.model_type=="hq":
h, w = x.shape[-2:]
padh = self.img_size - h
padw = self.img_size - w
x = F.pad(x, (0, padw, 0, padh), value=128)
# Normalize colors
x = (x - self.pixel_mean) / self.pixel_std
if self.model_type=="effi":
x = F.interpolate(x.unsqueeze(0), (self.img_size, self.img_size), mode="bilinear").squeeze(0)
else:
# Pad
h, w = x.shape[-2:]
padh = self.img_size - h
padw = self.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
def __getitem__(self, idx):
ds = random.randint(0, len(self.refer_seg_ds_list) - 1)
ds = self.refer_seg_ds_list[ds]
refer_seg_ds = self.refer_seg_data[ds]
images = refer_seg_ds["images"]
annotations = refer_seg_ds["annotations"]
img2refs = refer_seg_ds["img2refs"]
idx = random.randint(0, len(images) - 1)
image_info = images[idx]
image_path = image_info["file_name"]
image_id = image_info["id"]
refs = img2refs[image_id]
if len(refs) == 0:
return self.__getitem__(0)
sents = []
ann_ids = []
for ref in refs:
for sent in ref["sentences"]:
text = sent["sent"]
sents.append(text)
ann_ids.append(ref["ann_id"])
if len(sents) >= self.num_classes_per_sample:
sampled_inds = np.random.choice(
list(range(len(sents))), size=self.num_classes_per_sample, replace=False
)
else:
sampled_inds = list(range(len(sents)))
sampled_sents = np.vectorize(sents.__getitem__)(sampled_inds).tolist()
# sampled_ann_ids = np.vectorize(ann_ids.__getitem__)(sampled_inds).tolist()
sampled_ann_ids = [ann_ids[ind] for ind in sampled_inds]
sampled_classes = sampled_sents
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# preprocess image for evf
image_evf = self.image_preprocessor(image)
image = self.transform.apply_image(image) # preprocess image for sam
resize = image.shape[:2]
image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
flag = False
masks = []
for ann_id in sampled_ann_ids:
if isinstance(ann_id, list):
flag = True
if -1 in ann_id:
assert len(ann_id) == 1
m = np.zeros((image_info["height"], image_info["width"])).astype(
np.uint8
)
else:
m_final = np.zeros(
(image_info["height"], image_info["width"])
).astype(np.uint8)
for ann_id_i in ann_id:
ann = annotations[ann_id_i]
if len(ann["segmentation"]) == 0:
m = np.zeros(
(image_info["height"], image_info["width"])
).astype(np.uint8)
else:
if type(ann["segmentation"][0]) == list: # polygon
rle = mask.frPyObjects(
ann["segmentation"],
image_info["height"],
image_info["width"],
)
else:
rle = ann["segmentation"]
for i in range(len(rle)):
if not isinstance(rle[i]["counts"], bytes):
rle[i]["counts"] = rle[i]["counts"].encode()
m = mask.decode(rle)
m = np.sum(
m, axis=2
) # sometimes there are multiple binary map (corresponding to multiple segs)
m = m.astype(np.uint8) # convert to np.uint8
m_final = m_final | m
m = m_final
masks.append(m)
continue
ann = annotations[ann_id]
if len(ann["segmentation"]) == 0:
m = np.zeros((image_info["height"], image_info["width"])).astype(
np.uint8
)
masks.append(m)
continue
if type(ann["segmentation"][0]) == list: # polygon
rle = mask.frPyObjects(
ann["segmentation"], image_info["height"], image_info["width"]
)
else:
rle = ann["segmentation"]
for i in range(len(rle)):
if not isinstance(rle[i]["counts"], bytes):
rle[i]["counts"] = rle[i]["counts"].encode()
m = mask.decode(rle)
m = np.sum(
m, axis=2
) # sometimes there are multiple binary map (corresponding to multiple segs)
m = m.astype(np.uint8) # convert to np.uint8
masks.append(m)
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks)
label = torch.ones(masks.shape[1], masks.shape[2]) * self.ignore_label
return (
image_path,
image,
image_evf,
masks,
label,
resize,
sampled_classes,
)
|