File size: 6,274 Bytes
a93afca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import contextlib
import copy
import io
import logging
import os
import random
import numpy as np
import pycocotools.mask as mask_util
from detectron2.structures import Boxes, BoxMode, PolygonMasks, RotatedBoxes
from detectron2.utils.file_io import PathManager
from fvcore.common.timer import Timer
from PIL import Image
"""
This file contains functions to parse RefCOCO-format annotations into dicts in "Detectron2 format".
"""
logger = logging.getLogger(__name__)
__all__ = ["load_refcoco_json"]
def load_grefcoco_json(
refer_root,
dataset_name,
splitby,
split,
image_root,
extra_annotation_keys=None,
extra_refer_keys=None,
):
if dataset_name == "refcocop":
dataset_name = "refcoco+"
if dataset_name == "refcoco" or dataset_name == "refcoco+":
splitby == "unc"
if dataset_name == "refcocog":
assert splitby == "umd" or splitby == "google"
dataset_id = "_".join([dataset_name, splitby, split])
from .grefer import G_REFER
logger.info("Loading dataset {} ({}-{}) ...".format(dataset_name, splitby, split))
logger.info("Refcoco root: {}".format(refer_root))
timer = Timer()
refer_root = PathManager.get_local_path(refer_root)
with contextlib.redirect_stdout(io.StringIO()):
refer_api = G_REFER(data_root=refer_root, dataset=dataset_name, splitBy=splitby)
if timer.seconds() > 1:
logger.info(
"Loading {} takes {:.2f} seconds.".format(dataset_id, timer.seconds())
)
ref_ids = refer_api.getRefIds(split=split)
img_ids = refer_api.getImgIds(ref_ids)
refs = refer_api.loadRefs(ref_ids)
imgs = [refer_api.loadImgs(ref["image_id"])[0] for ref in refs]
anns = [refer_api.loadAnns(ref["ann_id"]) for ref in refs]
imgs_refs_anns = list(zip(imgs, refs, anns))
logger.info(
"Loaded {} images, {} referring object sets in G_RefCOCO format from {}".format(
len(img_ids), len(ref_ids), dataset_id
)
)
dataset_dicts = []
ann_keys = ["iscrowd", "bbox", "category_id"] + (extra_annotation_keys or [])
ref_keys = ["raw", "sent_id"] + (extra_refer_keys or [])
ann_lib = {}
NT_count = 0
MT_count = 0
for img_dict, ref_dict, anno_dicts in imgs_refs_anns:
record = {}
record["source"] = "grefcoco"
record["file_name"] = os.path.join(image_root, img_dict["file_name"])
record["height"] = img_dict["height"]
record["width"] = img_dict["width"]
image_id = record["image_id"] = img_dict["id"]
# Check that information of image, ann and ref match each other
# This fails only when the data parsing logic or the annotation file is buggy.
assert ref_dict["image_id"] == image_id
assert ref_dict["split"] == split
if not isinstance(ref_dict["ann_id"], list):
ref_dict["ann_id"] = [ref_dict["ann_id"]]
# No target samples
if None in anno_dicts:
assert anno_dicts == [None]
assert ref_dict["ann_id"] == [-1]
record["empty"] = True
obj = {key: None for key in ann_keys if key in ann_keys}
obj["bbox_mode"] = BoxMode.XYWH_ABS
obj["empty"] = True
obj = [obj]
# Multi target samples
else:
record["empty"] = False
obj = []
for anno_dict in anno_dicts:
ann_id = anno_dict["id"]
if anno_dict["iscrowd"]:
continue
assert anno_dict["image_id"] == image_id
assert ann_id in ref_dict["ann_id"]
if ann_id in ann_lib:
ann = ann_lib[ann_id]
else:
ann = {key: anno_dict[key] for key in ann_keys if key in anno_dict}
ann["bbox_mode"] = BoxMode.XYWH_ABS
ann["empty"] = False
segm = anno_dict.get("segmentation", None)
assert segm # either list[list[float]] or dict(RLE)
if isinstance(segm, dict):
if isinstance(segm["counts"], list):
# convert to compressed RLE
segm = mask_util.frPyObjects(segm, *segm["size"])
else:
# filter out invalid polygons (< 3 points)
segm = [
poly
for poly in segm
if len(poly) % 2 == 0 and len(poly) >= 6
]
if len(segm) == 0:
num_instances_without_valid_segmentation += 1
continue # ignore this instance
ann["segmentation"] = segm
ann_lib[ann_id] = ann
obj.append(ann)
record["annotations"] = obj
# Process referring expressions
sents = ref_dict["sentences"]
for sent in sents:
ref_record = record.copy()
ref = {key: sent[key] for key in ref_keys if key in sent}
ref["ref_id"] = ref_dict["ref_id"]
ref_record["sentence"] = ref
dataset_dicts.append(ref_record)
# if ref_record['empty']:
# NT_count += 1
# else:
# MT_count += 1
# logger.info("NT samples: %d, MT samples: %d", NT_count, MT_count)
# Debug mode
# return dataset_dicts[:100]
return dataset_dicts
if __name__ == "__main__":
"""
Test the COCO json dataset loader.
Usage:
python -m detectron2.data.datasets.coco \
path/to/json path/to/image_root dataset_name
"dataset_name" can be "coco_2014_minival_100", or other
pre-registered ones
"""
import sys
REFCOCO_PATH = "/mnt/lustre/hhding/code/ReLA/datasets"
COCO_TRAIN_2014_IMAGE_ROOT = "/mnt/lustre/hhding/code/ReLA/datasets/images"
REFCOCO_DATASET = "grefcoco"
REFCOCO_SPLITBY = "unc"
REFCOCO_SPLIT = "train"
dicts = load_grefcoco_json(
REFCOCO_PATH,
REFCOCO_DATASET,
REFCOCO_SPLITBY,
REFCOCO_SPLIT,
COCO_TRAIN_2014_IMAGE_ROOT,
)
print(1)
|