File size: 13,369 Bytes
a93afca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
# --------------------------------------------------------
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------'
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.registry import register_model
import numpy as np
import utils
from modeling_utils import BEiT3Wrapper, _get_base_config, _get_large_config
class TwoLayerMLP(nn.Module):
def __init__(
self,
in_features,
hidden_features,
out_features,
norm_layer,
norm_input=True,
):
super().__init__()
self.norm1 = norm_layer(in_features) if norm_input else nn.Identity()
self.dense1 = nn.Linear(in_features, hidden_features)
self.norm2 = norm_layer(hidden_features)
self.act = nn.GELU()
self.dense2 = nn.Linear(hidden_features, out_features)
def forward(self, x):
x = self.norm1(x)
x = self.dense1(x)
x = self.norm2(x)
x = self.act(x)
return self.dense2(x)
class Pooler(nn.Module):
def __init__(self, input_features, output_features, norm_layer):
super().__init__()
self.norm = norm_layer(input_features)
self.dense = nn.Linear(input_features, output_features)
self.activation = nn.Tanh()
def forward(self, x):
cls_rep = x[:, 0, :]
cls_rep = self.norm(cls_rep)
pooled_output = self.dense(cls_rep)
pooled_output = self.activation(pooled_output)
return pooled_output
class BEiT3ForVisualReasoning(BEiT3Wrapper):
def __init__(
self,
args,
num_classes,
norm_layer=nn.LayerNorm,
**kwargs
):
super(BEiT3ForVisualReasoning, self).__init__(args=args)
embed_dim = args.encoder_embed_dim
self.head = TwoLayerMLP(
in_features=embed_dim * 4,
hidden_features=embed_dim * 2,
out_features=num_classes,
norm_layer=norm_layer,
)
init_scale = 0.001
self.head.apply(self._init_weights)
if isinstance(self.head.dense1, nn.Linear):
self.head.dense1.weight.data.mul_(init_scale)
self.head.dense1.bias.data.mul_(init_scale)
if isinstance(self.head.dense2, nn.Linear):
self.head.dense2.weight.data.mul_(init_scale)
self.head.dense2.bias.data.mul_(init_scale)
def forward(self, image_a, image_b, text_description, padding_mask, **kwargs):
bsz, _ = text_description.size()
vision_input = torch.cat((image_a, image_b), dim=0)
language_input = torch.cat((text_description, text_description), dim=0)
padding_mask = torch.cat((padding_mask, padding_mask), dim=0)
outputs = self.beit3(
textual_tokens=language_input,
visual_tokens=vision_input,
text_padding_position=padding_mask,
)
x = outputs["encoder_out"]
multiway_split_position = outputs["multiway_split_position"]
vision_cls = x[:, 0, :]
language_cls = x[:, multiway_split_position, :]
cls_rep = torch.cat((vision_cls, language_cls), dim=-1)
a, b = torch.split(cls_rep, split_size_or_sections=[bsz, bsz], dim=0)
cls_rep = torch.cat((a, b), dim=-1)
return self.head(cls_rep)
class BEiT3ForImageClassification(BEiT3Wrapper):
def __init__(
self,
args,
num_classes,
norm_layer=nn.LayerNorm,
**kwargs
):
super(BEiT3ForImageClassification, self).__init__(args=args)
embed_dim = args.encoder_embed_dim
self.fc_norm = norm_layer(embed_dim)
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.fc_norm.apply(self._init_weights)
self.head.apply(self._init_weights)
init_scale = 0.001
if isinstance(self.head, nn.Linear):
self.head.weight.data.mul_(init_scale)
self.head.bias.data.mul_(init_scale)
def forward(self, image, **kwargs):
x = self.beit3(textual_tokens=None, visual_tokens=image)["encoder_out"]
t = x[:, 1:, :]
cls_x = self.fc_norm(t.mean(1))
return self.head(cls_x)
class BEiT3ForCaptioning(BEiT3Wrapper):
def __init__(
self,
args,
**kwargs
):
super(BEiT3ForCaptioning, self).__init__(args=args)
embed_dim = args.encoder_embed_dim
self.mlm_head = nn.Linear(embed_dim, args.vocab_size)
self.mlm_head.apply(self._init_weights)
def forward(self, image, text_ids, padding_mask, language_masked_pos, text_len=None, incremental_state=None, **kwargs):
text_len = text_len if text_len is not None else text_ids.size(1)
image_len = self.beit3.vision_embed.num_position_embeddings()
max_len = text_len + image_len
uni_mask = torch.zeros((max_len, max_len), dtype=torch.long, device=text_ids.device)
i_start, i_end = 0, image_len
t_start, t_end = image_len, max_len
# triangle mask for caption to caption
uni_mask[t_start:t_end, t_start:t_end] = torch.tril(torch.ones(text_len, text_len, dtype=torch.long, device=text_ids.device))
# full attention for caption to image
uni_mask[t_start:t_end, i_start:i_end] = 1
# full attention for image to image
uni_mask[i_start:i_end, i_start:i_end] = 1
uni_mask = 1-uni_mask
if incremental_state is not None:
for idx in range(self.get_num_layers()):
if idx not in incremental_state:
incremental_state[idx] = {}
# for incremental decoding
positions = None
if image is None:
uni_mask = uni_mask[-2:]
padding_mask = None
# start position (2 (fairseq starts at 2) + cur_position) is equal to text_len
positions = torch.arange(text_len, text_ids.size(1) + text_len, device=text_ids.device).long().unsqueeze(0)
outputs = self.beit3(
textual_tokens=text_ids,
visual_tokens=image,
text_padding_position=padding_mask,
attn_mask=uni_mask,
incremental_state=incremental_state,
positions=positions,
)
if image is not None:
text_feats = outputs["encoder_out"][:, image_len:]
else:
text_feats = outputs["encoder_out"]
if language_masked_pos is not None:
text_feats = text_feats[language_masked_pos.bool()]
return self.mlm_head(text_feats), incremental_state
class BEiT3ForVisualQuestionAnswering(BEiT3Wrapper):
def __init__(
self,
args,
num_classes,
norm_layer=nn.LayerNorm,
**kwargs
):
super(BEiT3ForVisualQuestionAnswering, self).__init__(args=args)
embed_dim = args.encoder_embed_dim
self.pooler = Pooler(
input_features=embed_dim,
output_features=embed_dim,
norm_layer=norm_layer,
)
self.pooler.apply(self._init_weights)
self.head = nn.Sequential(
nn.Linear(embed_dim, embed_dim * 2),
norm_layer(embed_dim * 2),
nn.GELU(),
nn.Linear(embed_dim * 2, num_classes),
)
self.head.apply(self._init_weights)
def forward(self, image, question, padding_mask, **kwargs):
outputs = self.beit3(
textual_tokens=question,
visual_tokens=image,
text_padding_position=padding_mask,
)
x = outputs["encoder_out"]
cls_rep = self.pooler(x)
return self.head(cls_rep)
class BEiT3ForRetrieval(BEiT3Wrapper):
def __init__(
self,
args,
**kwargs
):
super(BEiT3ForRetrieval, self).__init__(args=args)
embed_dim = args.encoder_embed_dim
self.language_head = nn.Linear(embed_dim, embed_dim, bias=False)
self.vision_head = nn.Linear(embed_dim, embed_dim, bias=False)
self.language_head.apply(self._init_weights)
self.vision_head.apply(self._init_weights)
self.criterion = utils.ClipLoss(
rank=utils.get_rank(),
world_size=utils.get_world_size(),
)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
def forward(self, image=None, text_description=None, padding_mask=None, only_infer=False, **kwargs):
if image is not None:
outputs = self.beit3(
textual_tokens=None,
visual_tokens=image,
text_padding_position=None,
)
x = outputs["encoder_out"]
vision_cls = self.vision_head(x[:, 0, :])
vision_cls = F.normalize(vision_cls, dim=-1)
else:
vision_cls = None
if text_description is not None:
outputs = self.beit3(
textual_tokens=text_description,
visual_tokens=None,
text_padding_position=padding_mask,
)
x = outputs["encoder_out"]
language_cls = self.language_head(x[:, 0, :])
language_cls = F.normalize(language_cls, dim=-1)
else:
language_cls = None
if only_infer:
return vision_cls, language_cls
else:
loss, logits_per_image, logits_per_text = self.criterion(
vision_cls, language_cls, self.logit_scale.exp())
return loss, vision_cls, language_cls
@register_model
def beit3_base_patch16_224_imageclassification(pretrained=False, **kwargs):
args = _get_base_config(**kwargs)
args.normalize_output = False
model = BEiT3ForImageClassification(args, num_classes=1000, **kwargs)
return model
@register_model
def beit3_large_patch16_224_imageclassification(pretrained=False, **kwargs):
args = _get_large_config(**kwargs)
args.normalize_output = False
model = BEiT3ForImageClassification(args, num_classes=1000, **kwargs)
return model
@register_model
def beit3_base_patch16_224_nlvr2(pretrained=False, **kwargs):
args = _get_base_config(**kwargs)
model = BEiT3ForVisualReasoning(args, num_classes=2, **kwargs)
return model
@register_model
def beit3_large_patch16_224_nlvr2(pretrained=False, **kwargs):
args = _get_large_config(**kwargs)
model = BEiT3ForVisualReasoning(args, num_classes=2, **kwargs)
return model
@register_model
def beit3_base_patch16_384_vqav2(pretrained=False, **kwargs):
args = _get_base_config(img_size=384, **kwargs)
args.normalize_output = False
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs)
return model
@register_model
def beit3_base_patch16_480_vqav2(pretrained=False, **kwargs):
args = _get_base_config(img_size=480, **kwargs)
args.normalize_output = False
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs)
return model
@register_model
def beit3_large_patch16_384_vqav2(pretrained=False, **kwargs):
args = _get_large_config(img_size=384, **kwargs)
args.normalize_output = False
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs)
return model
@register_model
def beit3_large_patch16_480_vqav2(pretrained=False, **kwargs):
args = _get_large_config(img_size=480, **kwargs)
args.normalize_output = False
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs)
return model
@register_model
def beit3_large_patch16_768_vqav2(pretrained=False, **kwargs):
args = _get_large_config(img_size=768, **kwargs)
args.normalize_output = False
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs)
return model
@register_model
def beit3_base_patch16_224_captioning(pretrained=False, **kwargs):
args = _get_base_config(**kwargs)
model = BEiT3ForCaptioning(args, **kwargs)
return model
@register_model
def beit3_base_patch16_480_captioning(pretrained=False, **kwargs):
args = _get_base_config(img_size=480, **kwargs)
model = BEiT3ForCaptioning(args, **kwargs)
return model
@register_model
def beit3_large_patch16_480_captioning(pretrained=False, **kwargs):
args = _get_large_config(img_size=480, **kwargs)
model = BEiT3ForCaptioning(args, **kwargs)
return model
@register_model
def beit3_base_patch16_224_retrieval(pretrained=False, **kwargs):
args = _get_base_config(**kwargs)
model = BEiT3ForRetrieval(args, **kwargs)
return model
@register_model
def beit3_base_patch16_384_retrieval(pretrained=False, **kwargs):
args = _get_base_config(img_size=384, **kwargs)
model = BEiT3ForRetrieval(args, **kwargs)
return model
@register_model
def beit3_large_patch16_384_retrieval(pretrained=False, **kwargs):
args = _get_large_config(img_size=384, **kwargs)
model = BEiT3ForRetrieval(args, **kwargs)
return model
|