File size: 25,579 Bytes
a93afca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
# --------------------------------------------------------
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------'
import math
import sys
import json
from typing import Iterable, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.utils import ModelEma
from timm.utils import accuracy, ModelEma
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from datasets import get_sentencepiece_model_for_beit3
import utils
class TaskHandler(object):
def __init__(self) -> None:
self.metric_logger = None
self.split = None
def train_batch(self, model, **kwargs):
raise NotImplementedError()
def eval_batch(self, model, **kwargs):
raise NotImplementedError()
def before_eval(self, metric_logger, data_loader, **kwargs):
self.metric_logger = metric_logger
self.split = data_loader.dataset.split
def after_eval(self, **kwargs):
raise NotImplementedError()
class NLVR2Handler(TaskHandler):
def __init__(self) -> None:
super().__init__()
self.criterion = torch.nn.CrossEntropyLoss()
def train_batch(self, model, image, image2, language_tokens, padding_mask, label):
logits = model(
image_a=image, image_b=image2,
text_description=language_tokens,
padding_mask=padding_mask)
acc = (logits.max(-1)[-1] == label).float().mean()
return {
"loss": self.criterion(input=logits, target=label),
"acc": acc,
}
def eval_batch(self, model, image, image2, language_tokens, padding_mask, label):
logits = model(
image_a=image, image_b=image2,
text_description=language_tokens,
padding_mask=padding_mask)
batch_size = language_tokens.shape[0]
acc = (logits.max(-1)[-1] == label).float().sum(0) * 100.0 / batch_size
self.metric_logger.meters['acc'].update(acc.item(), n=batch_size)
def after_eval(self, **kwargs):
print('* Acc {acc.global_avg:.3f}'.format(acc=self.metric_logger.acc))
return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "acc"
class ImageNetHandler(TaskHandler):
def __init__(self, args) -> None:
super().__init__()
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
# smoothing is handled with mixup label transform
self.criterion = SoftTargetCrossEntropy()
elif args.label_smoothing > 0.:
self.criterion = LabelSmoothingCrossEntropy(smoothing=args.label_smoothing)
else:
self.criterion = torch.nn.CrossEntropyLoss()
def train_batch(self, model, image, label):
logits = model(image=image)
return {
"loss": self.criterion(logits, label),
}
def eval_batch(self, model, image, label):
logits = model(image=image)
batch_size = image.shape[0]
acc1, acc5 = accuracy(logits, label, topk=(1, 5))
self.metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
self.metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
def after_eval(self, **kwargs):
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'
.format(top1=self.metric_logger.acc1, top5=self.metric_logger.acc5))
return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "acc1"
class RetrievalHandler(TaskHandler):
def __init__(self) -> None:
super().__init__()
self.image_feats = []
self.text_feats = []
self.image_ids = []
self.metric_logger = None
def train_batch(self, model, image, language_tokens, padding_mask, image_id):
loss, vision_cls, language_cls = model(
image=image, text_description=language_tokens, padding_mask=padding_mask)
return {
"loss": loss,
}
def before_eval(self, metric_logger, **kwargs):
self.image_feats.clear()
self.text_feats.clear()
self.image_ids.clear()
self.metric_logger = metric_logger
def eval_batch(self, model, image, language_tokens, padding_mask, image_id):
vision_cls, _ = model(image=image, only_infer=True)
_, language_cls = model(
text_description=language_tokens, padding_mask=padding_mask, only_infer=True)
self.image_feats.append(vision_cls.clone())
self.text_feats.append(language_cls.clone())
self.image_ids.append(image_id.clone())
def after_eval(self, **kwargs):
image_feats = {}
for feats, ids in zip(self.image_feats, self.image_ids):
for i, _idx in enumerate(ids):
idx = _idx.item()
if idx not in image_feats:
image_feats[idx] = feats[i]
tiids = torch.cat(self.image_ids, dim=0)
iids = []
sorted_tensors = []
for key in sorted(image_feats.keys()):
sorted_tensors.append(image_feats[key].view(1, -1))
iids.append(key)
image_cls_feats = torch.cat(sorted_tensors, dim=0)
text_cls_feats = torch.cat(self.text_feats, dim=0)
scores = image_cls_feats @ text_cls_feats.t()
iids = torch.LongTensor(iids).to(scores.device)
print("scores: {}".format(scores.size()))
print("iids: {}".format(iids.size()))
print("tiids: {}".format(tiids.size()))
topk10 = scores.topk(10, dim=1)
topk5 = scores.topk(5, dim=1)
topk1 = scores.topk(1, dim=1)
topk10_iids = tiids[topk10.indices]
topk5_iids = tiids[topk5.indices]
topk1_iids = tiids[topk1.indices]
tr_r10 = (iids.unsqueeze(1) == topk10_iids).float().max(dim=1)[0].mean()
tr_r5 = (iids.unsqueeze(1) == topk5_iids).float().max(dim=1)[0].mean()
tr_r1 = (iids.unsqueeze(1) == topk1_iids).float().max(dim=1)[0].mean()
topk10 = scores.topk(10, dim=0)
topk5 = scores.topk(5, dim=0)
topk1 = scores.topk(1, dim=0)
topk10_iids = iids[topk10.indices]
topk5_iids = iids[topk5.indices]
topk1_iids = iids[topk1.indices]
ir_r10 = (tiids.unsqueeze(0) == topk10_iids).float().max(dim=0)[0].mean()
ir_r5 = (tiids.unsqueeze(0) == topk5_iids).float().max(dim=0)[0].mean()
ir_r1 = (tiids.unsqueeze(0) == topk1_iids).float().max(dim=0)[0].mean()
eval_result = {
"tr_r10": tr_r10.item() * 100.0,
"tr_r5": tr_r5.item() * 100.0,
"tr_r1": tr_r1.item() * 100.0,
"ir_r10": ir_r10.item() * 100.0,
"ir_r5": ir_r5.item() * 100.0,
"ir_r1": ir_r1.item() * 100.0,
"average_score": 100.0 * (tr_r1 + tr_r5 + tr_r10 + ir_r1 + ir_r5 + ir_r10).item() / 6.0,
}
print('* Eval result = %s' % json.dumps(eval_result))
return eval_result, "average_score"
class VQAHandler(TaskHandler):
def __init__(self) -> None:
super().__init__()
self.predictions = []
self.criterion = nn.BCEWithLogitsLoss(reduction='mean')
self.label2ans = None
def train_batch(self, model, image, language_tokens, padding_mask, labels):
logits = model(
image=image, question=language_tokens,
padding_mask=padding_mask)
return {
"loss": self.criterion(input=logits.float(), target=labels.float()) * labels.shape[1],
}
def before_eval(self, metric_logger, data_loader, **kwargs):
self.predictions.clear()
self.metric_logger = metric_logger
self.label2ans = data_loader.dataset.label2ans
def eval_batch(self, model, image, language_tokens, padding_mask, labels=None, qid=None):
logits = model(
image=image, question=language_tokens,
padding_mask=padding_mask)
batch_size = language_tokens.shape[0]
if labels is not None:
scores = utils.VQAScore()(logits, labels) * 100.0
self.metric_logger.meters['score'].update(scores.item(), n=batch_size)
else:
_, preds = logits.max(-1)
for image_id, pred in zip(qid, preds):
self.predictions.append({
"question_id": image_id.item(),
"answer": self.label2ans[pred.item()],
})
def after_eval(self, **kwargs):
if len(self.predictions) == 0:
print('* Score {score.global_avg:.3f}'.format(score=self.metric_logger.score))
return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "score"
else:
return self.predictions, "prediction"
class CaptioningHandler(TaskHandler):
def __init__(self, args) -> None:
super().__init__()
self.predictions = []
self.criterion = utils.BertCaptioningLoss(args.label_smoothing, args.drop_worst_ratio, args.drop_worst_after)
self.tokenizer = get_sentencepiece_model_for_beit3(args)
self.num_beams = args.num_beams
self.max_len = args.num_max_bpe_tokens
self.length_penalty = args.length_penalty
self.vocab_size = args.vocab_size
def train_batch(self, model, image, language_tokens, masked_tokens, language_masked_pos, padding_mask, image_id, global_step):
logits, _ = model(
image=image, text_ids=masked_tokens, padding_mask=padding_mask, language_masked_pos=language_masked_pos, image_id=image_id)
masked_labels = language_tokens[language_masked_pos.bool()]
score = torch.max(logits, -1)[1].data == masked_labels
acc = torch.sum(score.float()) / torch.sum(language_masked_pos)
return {
"loss": self.criterion(logits, masked_labels, global_step),
"acc": acc
}
def before_eval(self, metric_logger, data_loader, **kwargs):
self.predictions.clear()
self.metric_logger = metric_logger
def eval_batch(self, model, image, image_id=None):
cur_len = 2
num_keep_best = 1
TOPN_PER_BEAM = 3
batch_size = image.size(0)
mask_id = self.tokenizer.mask_token_id
cls_id = self.tokenizer.cls_token_id
pad_id = self.tokenizer.pad_token_id
sep_id = self.tokenizer.sep_token_id
eos_token_ids = [sep_id]
cls_ids = torch.full(
(batch_size, 1), cls_id, dtype=torch.long, device=image.device
)
mask_ids = torch.full(
(batch_size, 1), mask_id, dtype=torch.long, device=image.device
)
cur_input_ids = torch.cat([cls_ids, mask_ids], dim=1)
tmp_ids = torch.full(
(batch_size, self.max_len-1), mask_id, dtype=torch.long, device=image.device
)
decoding_results = torch.cat([cls_ids, tmp_ids], dim=1)
# Expand input to num beams
cur_input_ids = cur_input_ids.unsqueeze(1).expand(batch_size, self.num_beams, cur_len)
cur_input_ids = cur_input_ids.contiguous().view(batch_size * self.num_beams, cur_len) # (batch_size * num_beams, cur_len)
decoding_results = decoding_results.unsqueeze(1).expand(batch_size, self.num_beams, self.max_len)
decoding_results = decoding_results.contiguous().view(batch_size * self.num_beams, self.max_len) # (batch_size * num_beams, cur_len)
image = image.unsqueeze(1).expand(batch_size, self.num_beams, image.size(-3), image.size(-2), image.size(-1))
image = image.contiguous().view(batch_size * self.num_beams, image.size(-3), image.size(-2), image.size(-1))
generated_hyps = [
utils.BeamHypotheses(
num_keep_best, self.max_len, length_penalty=self.length_penalty, early_stopping=False
) for _ in range(batch_size)
]
# scores for each sentence in the beam
beam_scores = torch.zeros((batch_size, self.num_beams), dtype=torch.float, device=cur_input_ids.device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view(-1) # shape (batch_size * num_beams,)
# done sentences
done = [False for _ in range(batch_size)]
incremental_state = {}
while cur_len <= self.max_len:
next_token_idx = 1
padding_masks = torch.full(
cur_input_ids.shape, 0, dtype=torch.long, device=image.device
)
input_image = image
if cur_len != 2:
input_image = None
outputs, incremental_state_next = model(
image=input_image, text_ids=cur_input_ids, language_masked_pos=None,
padding_mask=padding_masks, text_len=cur_len, incremental_state=incremental_state)
incremental_state = incremental_state_next
# assert outputs.shape[1] == token_len
scores = outputs[:, next_token_idx, :] # (batch_size * num_beams, vocab_size)
scores = F.log_softmax(scores, dim=-1) # (batch_size * num_beams, vocab_size)
assert scores.size() == (batch_size * self.num_beams, self.vocab_size)
# Add the log prob of the new beams to the log prob of the beginning of the sequence (sum of logs == log of the product)
_scores = scores + beam_scores[:, None].expand_as(scores) # (batch_size * num_beams, vocab_size)
# re-organize to group the beam together (we are keeping top hypothesis accross beams)
_scores = _scores.view(batch_size, self.num_beams * self.vocab_size) # (batch_size, num_beams * vocab_size)
next_scores, next_words = torch.topk(_scores, TOPN_PER_BEAM * self.num_beams, dim=1, largest=True, sorted=True)
assert next_scores.size() == next_words.size() == (batch_size, TOPN_PER_BEAM * self.num_beams)
# next batch beam content
# list of (batch_size * num_beams) tuple(next hypothesis score, next word, current position in the batch)
next_batch_beam = []
# for each sentence
for batch_ex in range(batch_size):
# if we are done with this sentence
done[batch_ex] = done[batch_ex] or generated_hyps[batch_ex].is_done(next_scores[batch_ex].max().item())
if done[batch_ex]:
next_batch_beam.extend([(0, pad_id, 0)] * self.num_beams) # pad the batch
continue
# next sentence beam content
next_sent_beam = []
for idx, score in zip(next_words[batch_ex], next_scores[batch_ex]):
# get beam and word IDs
beam_id = idx // self.vocab_size
word_id = idx % self.vocab_size
# end of sentence, or next word
# if word_id.item() in eos_token_ids or cur_len + 1 == max_len:
if (word_id.item() in eos_token_ids and cur_len + 1 <= self.max_len) or (cur_len + 1 == self.max_len):
generated_hyps[batch_ex].add(
decoding_results[batch_ex * self.num_beams + beam_id, :cur_len].clone(), score.item()
)
else:
next_sent_beam.append((score, word_id, batch_ex * self.num_beams + beam_id))
# the beam for next step is full
if len(next_sent_beam) == self.num_beams:
break
# update next beam content
if cur_len + 1 == self.max_len:
assert len(next_sent_beam) == 0
else:
assert len(next_sent_beam) == self.num_beams
if len(next_sent_beam) == 0:
next_sent_beam = [(0, pad_id, 0)] * self.num_beams # pad the batch
next_batch_beam.extend(next_sent_beam)
assert len(next_batch_beam) == self.num_beams * (batch_ex + 1)
# sanity check / prepare next batch
assert len(next_batch_beam) == batch_size * self.num_beams
beam_scores = beam_scores.new([x[0] for x in next_batch_beam])
beam_words = cur_input_ids.new([x[1] for x in next_batch_beam])
beam_idx = cur_input_ids.new([x[2] for x in next_batch_beam])
# re-order batch
cur_input_ids = cur_input_ids[beam_idx, :]
decoding_results = decoding_results[beam_idx, :]
for module in incremental_state:
for key in incremental_state[module]:
result = incremental_state[module][key].index_select(0, beam_idx)
incremental_state[module][key] = result[:,:,:-1,:]
next_ids = torch.full(
(batch_size * self.num_beams, 1), mask_id, dtype=torch.long, device=image.device
)
cur_input_ids = torch.cat([beam_words.unsqueeze(1), next_ids], dim=1)
decoding_results[:, cur_len-1] = beam_words
# update current length
cur_len = cur_len + 1
# stop when we are done with each sentence
if all(done):
break
# select the best hypotheses
tgt_len = torch.ones(batch_size, num_keep_best, dtype=torch.long)
logprobs = torch.zeros(batch_size, num_keep_best,
dtype=torch.float).fill_(-1e5).to(cur_input_ids.device)
all_best = []
for i, hypotheses in enumerate(generated_hyps):
best = []
hyp_scores = torch.tensor([x[0] for x in hypotheses.hyp])
_, best_indices = torch.topk(hyp_scores,
min(num_keep_best, len(hyp_scores)), largest=True)
for best_idx, hyp_idx in enumerate(best_indices):
conf, best_hyp = hypotheses.hyp[hyp_idx]
best.append(best_hyp)
logprobs[i, best_idx] = conf
tgt_len[i, best_idx] = len(best_hyp) + 1 # +1 for the <EOS> symbol
all_best.append(best)
# generate target batch, pad to the same length
decoded = cur_input_ids.new(batch_size, num_keep_best, self.max_len).fill_(pad_id)
for batch_idx, best in enumerate(all_best):
for best_idx, hypo in enumerate(best):
decoded[batch_idx, best_idx, : tgt_len[batch_idx, best_idx] - 1] = hypo
decoded[batch_idx, best_idx, tgt_len[batch_idx, best_idx] - 1] = eos_token_ids[0]
captions = self.tokenizer.batch_decode(decoded.squeeze(1), skip_special_tokens=True)
for qid, pred in zip(image_id, captions):
self.predictions.append({
"image_id": qid.item(),
"caption": pred,
})
def after_eval(self, **kwargs):
return self.predictions, "prediction"
def get_handler(args):
if args.task == "nlvr2":
return NLVR2Handler()
elif args.task == "vqav2":
return VQAHandler()
elif args.task in ("flickr30k", "coco_retrieval"):
return RetrievalHandler()
elif args.task in ("coco_captioning", "nocaps"):
return CaptioningHandler(args)
elif args.task in ("imagenet"):
return ImageNetHandler(args)
else:
raise NotImplementedError("Sorry, %s is not support." % args.task)
def train_one_epoch(
model: torch.nn.Module, data_loader: Iterable,
optimizer: torch.optim.Optimizer, device: torch.device,
handler: TaskHandler, epoch: int, start_steps: int,
lr_schedule_values: list, loss_scaler, max_norm: float = 0,
update_freq: int = 1, model_ema: Optional[ModelEma] = None,
log_writer: Optional[utils.TensorboardLogger] = None,
task = None, mixup_fn=None,
):
model.train(True)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
if loss_scaler is None:
model.zero_grad()
model.micro_steps = 0
else:
optimizer.zero_grad()
for data_iter_step, data in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
step = data_iter_step // update_freq
global_step = start_steps + step # global training iteration
# Update LR & WD for the first acc
if lr_schedule_values is not None and data_iter_step % update_freq == 0:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[global_step] * param_group["lr_scale"]
# put input data into cuda
for tensor_key in data.keys():
data[tensor_key] = data[tensor_key].to(device, non_blocking=True)
# print("input %s = %s" % (tensor_key, data[tensor_key]))
if loss_scaler is None and tensor_key.startswith("image"):
data[tensor_key] = data[tensor_key].half()
# mixup for imagenet finetuning
if mixup_fn is not None:
data["image"], data["label"] = mixup_fn(data["image"], data["label"])
if task in ["coco_captioning", "nocaps"]:
data["global_step"] = global_step
if loss_scaler is None:
results = handler.train_batch(model, **data)
else:
with torch.cuda.amp.autocast():
results = handler.train_batch(model, **data)
loss = results.pop("loss")
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
if loss_scaler is None:
loss /= update_freq
model.backward(loss)
model.step()
if (data_iter_step + 1) % update_freq == 0:
# model.zero_grad()
# Deepspeed will call step() & model.zero_grad() automatic
if model_ema is not None:
model_ema.update(model)
grad_norm = None
loss_scale_value = utils.get_loss_scale_for_deepspeed(model)
else:
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss /= update_freq
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order,
update_grad=(data_iter_step + 1) % update_freq == 0)
if (data_iter_step + 1) % update_freq == 0:
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model)
loss_scale_value = loss_scaler.state_dict()["scale"]
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
metric_logger.update(loss_scale=loss_scale_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group["weight_decay"] > 0:
weight_decay_value = group["weight_decay"]
metric_logger.update(weight_decay=weight_decay_value)
metric_logger.update(grad_norm=grad_norm)
if log_writer is not None:
kwargs = {
"loss": loss_value,
}
for key in results:
kwargs[key] = results[key]
log_writer.update(head="train", **kwargs)
kwargs = {
"loss_scale": loss_scale_value,
"lr": max_lr,
"min_lr": min_lr,
"weight_decay": weight_decay_value,
"grad_norm": grad_norm,
}
log_writer.update(head="opt", **kwargs)
log_writer.set_step()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, handler):
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
handler.before_eval(metric_logger=metric_logger, data_loader=data_loader)
for data in metric_logger.log_every(data_loader, 10, header):
for tensor_key in data.keys():
data[tensor_key] = data[tensor_key].to(device, non_blocking=True)
with torch.cuda.amp.autocast():
handler.eval_batch(model=model, **data)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
return handler.after_eval()
|