File size: 7,700 Bytes
a93afca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import List, Optional, Tuple, Type
import torch
import torch.nn as nn
import torch.nn.functional as F
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
img_size,
patch_size,
in_chans,
embed_dim,
):
super().__init__()
self.proj = nn.Conv2d(
in_chans,
embed_dim,
kernel_size=(patch_size, patch_size),
stride=(patch_size, patch_size),
bias=True,
)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads,
qkv_bias,
qk_scale=None,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
def forward(self, x):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
return x
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
act_layer=nn.GELU,
):
super().__init__()
self.norm1 = nn.LayerNorm(dim, eps=1e-6)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
)
self.norm2 = nn.LayerNorm(dim, eps=1e-6)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
@torch.jit.export
def get_abs_pos(
abs_pos: torch.Tensor, has_cls_token: bool, hw: List[int]
) -> torch.Tensor:
"""
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token
dimension for the original embeddings.
Args:
abs_pos (Tensor): absolute positional embeddings with (1, num_position, C).
has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token.
hw (Tuple): size of input image tokens.
Returns:
Absolute positional embeddings after processing with shape (1, H, W, C)
"""
h = hw[0]
w = hw[1]
if has_cls_token:
abs_pos = abs_pos[:, 1:]
xy_num = abs_pos.shape[1]
size = int(math.sqrt(xy_num))
assert size * size == xy_num
if size != h or size != w:
new_abs_pos = F.interpolate(
abs_pos.reshape(1, size, size, -1).permute(0, 3, 1, 2),
size=(h, w),
mode="bicubic",
align_corners=False,
)
return new_abs_pos.permute(0, 2, 3, 1)
else:
return abs_pos.reshape(1, h, w, -1)
# Image encoder for efficient SAM.
class ImageEncoderViT(nn.Module):
def __init__(
self,
img_size: int,
patch_size: int,
in_chans: int,
patch_embed_dim: int,
normalization_type: str,
depth: int,
num_heads: int,
mlp_ratio: float,
neck_dims: List[int],
act_layer: Type[nn.Module],
) -> None:
"""
Args:
img_size (int): Input image size.
patch_size (int): Patch size.
in_chans (int): Number of input image channels.
patch_embed_dim (int): Patch embedding dimension.
depth (int): Depth of ViT.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
act_layer (nn.Module): Activation layer.
"""
super().__init__()
self.img_size = img_size
self.image_embedding_size = img_size // ((patch_size if patch_size > 0 else 1))
self.transformer_output_dim = ([patch_embed_dim] + neck_dims)[-1]
self.pretrain_use_cls_token = True
pretrain_img_size = 224
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, patch_embed_dim)
# Initialize absolute positional embedding with pretrain image size.
num_patches = (pretrain_img_size // patch_size) * (
pretrain_img_size // patch_size
)
num_positions = num_patches + 1
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, patch_embed_dim))
self.blocks = nn.ModuleList()
for i in range(depth):
vit_block = Block(patch_embed_dim, num_heads, mlp_ratio, True)
self.blocks.append(vit_block)
self.neck = nn.Sequential(
nn.Conv2d(
patch_embed_dim,
neck_dims[0],
kernel_size=1,
bias=False,
),
LayerNorm2d(neck_dims[0]),
nn.Conv2d(
neck_dims[0],
neck_dims[0],
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(neck_dims[0]),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
assert (
x.shape[2] == self.img_size and x.shape[3] == self.img_size
), "input image size must match self.img_size"
x = self.patch_embed(x)
# B C H W -> B H W C
x = x.permute(0, 2, 3, 1)
x = x + get_abs_pos(
self.pos_embed, self.pretrain_use_cls_token, [x.shape[1], x.shape[2]]
)
num_patches = x.shape[1]
assert x.shape[2] == num_patches
x = x.reshape(x.shape[0], num_patches * num_patches, x.shape[3])
for blk in self.blocks:
x = blk(x)
x = x.reshape(x.shape[0], num_patches, num_patches, x.shape[2])
x = self.neck(x.permute(0, 3, 1, 2))
return x
|