File size: 3,459 Bytes
95bdec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import spaces
from pip._internal import main
main(['install', 'timm==1.0.8'])
import timm
print("installed", timm.__version__)
import gradio as gr
from inference import sam_preprocess, beit3_preprocess
from model.evf_sam import EvfSamModel
from transformers import AutoTokenizer
import torch
import numpy as np
import sys
import os
version = "YxZhang/evf-sam"
model_type = "ori"
tokenizer = AutoTokenizer.from_pretrained(
version,
padding_side="right",
use_fast=False,
)
kwargs = {
"torch_dtype": torch.half,
}
model = EvfSamModel.from_pretrained(version, low_cpu_mem_usage=True,
**kwargs).eval()
model.to('cuda')
@spaces.GPU
@torch.no_grad()
def pred(image_np, prompt):
original_size_list = [image_np.shape[:2]]
image_beit = beit3_preprocess(image_np, 224).to(dtype=model.dtype,
device=model.device)
image_sam, resize_shape = sam_preprocess(image_np, model_type=model_type)
image_sam = image_sam.to(dtype=model.dtype, device=model.device)
input_ids = tokenizer(
prompt, return_tensors="pt")["input_ids"].to(device=model.device)
# infer
pred_mask = model.inference(
image_sam.unsqueeze(0),
image_beit.unsqueeze(0),
input_ids,
resize_list=[resize_shape],
original_size_list=original_size_list,
)
pred_mask = pred_mask.detach().cpu().numpy()[0]
pred_mask = pred_mask > 0
visualization = image_np.copy()
visualization[pred_mask] = (image_np * 0.5 +
pred_mask[:, :, None].astype(np.uint8) *
np.array([50, 120, 220]) * 0.5)[pred_mask]
return visualization / 255.0, pred_mask.astype(np.float16)
desc = """
<div><h3>EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3>
<p>EVF-SAM extends SAM's capabilities with text-prompted segmentation, achieving high accuracy in Referring Expression Segmentation.</p></div>
<div style='display:flex; gap: 0.25rem; align-items: center'><a href="https://arxiv.org/abs/2406.20076"><img src="https://img.shields.io/badge/arXiv-Paper-red"></a><a href="https://github.com/hustvl/EVF-SAM"><img src="https://img.shields.io/badge/GitHub-Code-blue"></a></div>
"""
# desc_title_str = '<div align ="center"><img src="assets/logo.jpg" width="20%"><h3> Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3></div>'
# desc_link_str = '[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2406.20076)'
demo = gr.Interface(
fn=pred,
inputs=[
gr.components.Image(type="numpy", label="Image", image_mode="RGB"),
gr.components.Textbox(
label="Prompt",
info=
"Use a phrase or sentence to describe the object you want to segment. Currently we only support English"
)
],
outputs=[
gr.components.Image(type="numpy", label="visulization"),
gr.components.Image(type="numpy", label="mask")
],
examples=[["assets/zebra.jpg", "zebra top left"],
["assets/bus.jpg", "bus going to south common"],
[
"assets/carrots.jpg",
"3carrots in center with ice and greenn leaves"
]],
title="📷 EVF-SAM: Referring Expression Segmentation",
description=desc,
allow_flagging="never")
# demo.launch()
demo.launch()
|