Spaces:
Runtime error
Runtime error
srivatsavdamaraju
commited on
Commit
•
53f5f46
1
Parent(s):
cb2d9db
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, render_template, jsonify
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
import base64
|
7 |
+
from io import BytesIO
|
8 |
+
from PIL import Image
|
9 |
+
import threading
|
10 |
+
import queue
|
11 |
+
|
12 |
+
# Load the MiDaS model from PyTorch Hub
|
13 |
+
model = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
|
14 |
+
model.eval()
|
15 |
+
|
16 |
+
# Image transformation function
|
17 |
+
transform = transforms.Compose([
|
18 |
+
transforms.ToPILImage(),
|
19 |
+
transforms.Resize((256, 256)),
|
20 |
+
transforms.ToTensor(),
|
21 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
22 |
+
])
|
23 |
+
|
24 |
+
# Create Flask app
|
25 |
+
app = Flask(__name__)
|
26 |
+
|
27 |
+
# Function to estimate depth from a frame and apply color mapping
|
28 |
+
def estimate_depth(frame):
|
29 |
+
input_batch = transform(frame).unsqueeze(0)
|
30 |
+
with torch.no_grad():
|
31 |
+
prediction = model(input_batch)
|
32 |
+
depth_map = prediction.squeeze().cpu().numpy()
|
33 |
+
|
34 |
+
# Normalize and apply a colormap
|
35 |
+
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX)
|
36 |
+
depth_map = depth_map.astype(np.uint8)
|
37 |
+
colored_depth_map = cv2.applyColorMap(depth_map, cv2.COLORMAP_JET)
|
38 |
+
return colored_depth_map
|
39 |
+
|
40 |
+
# Function to process the video frame in a separate thread
|
41 |
+
def process_frame_thread(data, response_queue):
|
42 |
+
image_data = base64.b64decode(data.split(',')[1])
|
43 |
+
image = Image.open(BytesIO(image_data))
|
44 |
+
frame = np.array(image)
|
45 |
+
|
46 |
+
# Convert RGB to BGR format (as OpenCV expects BGR)
|
47 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
48 |
+
depth_map = estimate_depth(frame)
|
49 |
+
|
50 |
+
# Encode depth map as a base64 image to send back
|
51 |
+
_, buffer = cv2.imencode('.jpg', depth_map)
|
52 |
+
depth_map_base64 = base64.b64encode(buffer).decode('utf-8')
|
53 |
+
|
54 |
+
# Add the result to the response queue
|
55 |
+
response_queue.put(f"data:image/jpeg;base64,{depth_map_base64}")
|
56 |
+
|
57 |
+
# Route to serve the HTML template
|
58 |
+
@app.route('/')
|
59 |
+
def index():
|
60 |
+
return render_template('index.html')
|
61 |
+
|
62 |
+
# Route to process video frames and return depth map
|
63 |
+
@app.route('/process_frame', methods=['POST'])
|
64 |
+
def process_frame():
|
65 |
+
data = request.json['image']
|
66 |
+
|
67 |
+
# Create a queue to hold the response from the background thread
|
68 |
+
response_queue = queue.Queue()
|
69 |
+
|
70 |
+
# Start the processing thread
|
71 |
+
thread = threading.Thread(target=process_frame_thread, args=(data, response_queue))
|
72 |
+
thread.start()
|
73 |
+
|
74 |
+
# Wait for the thread to complete and get the result from the queue
|
75 |
+
thread.join()
|
76 |
+
depth_map_base64 = response_queue.get()
|
77 |
+
|
78 |
+
return jsonify({'depth_map': depth_map_base64})
|
79 |
+
|
80 |
+
if __name__ == "__main__":
|
81 |
+
app.run(debug=True)
|