Spaces:
Runtime error
Runtime error
from flask import Flask, request, render_template, jsonify | |
import cv2 | |
import numpy as np | |
import torch | |
from torchvision import transforms | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
import threading | |
import queue | |
# Load the MiDaS model from PyTorch Hub | |
model = torch.hub.load("intel-isl/MiDaS", "MiDaS_small", force_reload=True) | |
model.eval() | |
# Image transformation function | |
transform = transforms.Compose([ | |
transforms.ToPILImage(), | |
transforms.Resize((256, 256)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
# Create Flask app | |
app = Flask(__name__) | |
# Function to estimate depth from a frame and apply color mapping | |
def estimate_depth(frame): | |
input_batch = transform(frame).unsqueeze(0) | |
with torch.no_grad(): | |
prediction = model(input_batch) | |
depth_map = prediction.squeeze().cpu().numpy() | |
# Normalize and apply a colormap | |
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX) | |
depth_map = depth_map.astype(np.uint8) | |
colored_depth_map = cv2.applyColorMap(depth_map, cv2.COLORMAP_JET) | |
return colored_depth_map | |
# Function to process the video frame in a separate thread | |
def process_frame_thread(data, response_queue): | |
image_data = base64.b64decode(data.split(',')[1]) | |
image = Image.open(BytesIO(image_data)) | |
frame = np.array(image) | |
# Convert RGB to BGR format (as OpenCV expects BGR) | |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) | |
depth_map = estimate_depth(frame) | |
# Encode depth map as a base64 image to send back | |
_, buffer = cv2.imencode('.jpg', depth_map) | |
depth_map_base64 = base64.b64encode(buffer).decode('utf-8') | |
# Add the result to the response queue | |
response_queue.put(f"data:image/jpeg;base64,{depth_map_base64}") | |
# Route to serve the HTML template | |
def index(): | |
return render_template('index.html') | |
# Route to process video frames and return depth map | |
def process_frame(): | |
data = request.json['image'] | |
# Create a queue to hold the response from the background thread | |
response_queue = queue.Queue() | |
# Start the processing thread | |
thread = threading.Thread(target=process_frame_thread, args=(data, response_queue)) | |
thread.start() | |
# Wait for the thread to complete and get the result from the queue | |
thread.join() | |
depth_map_base64 = response_queue.get() | |
return jsonify({'depth_map': depth_map_base64}) | |
if __name__ == "__main__": | |
app.run(debug=True) | |