from flask import Flask, request, render_template, jsonify import cv2 import numpy as np import torch from torchvision import transforms import base64 from io import BytesIO from PIL import Image import threading import queue # Load the MiDaS model from PyTorch Hub model = torch.hub.load("intel-isl/MiDaS", "MiDaS_small", force_reload=True) model.eval() # Image transformation function transform = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # Create Flask app app = Flask(__name__) # Function to estimate depth from a frame and apply color mapping def estimate_depth(frame): input_batch = transform(frame).unsqueeze(0) with torch.no_grad(): prediction = model(input_batch) depth_map = prediction.squeeze().cpu().numpy() # Normalize and apply a colormap depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX) depth_map = depth_map.astype(np.uint8) colored_depth_map = cv2.applyColorMap(depth_map, cv2.COLORMAP_JET) return colored_depth_map # Function to process the video frame in a separate thread def process_frame_thread(data, response_queue): image_data = base64.b64decode(data.split(',')[1]) image = Image.open(BytesIO(image_data)) frame = np.array(image) # Convert RGB to BGR format (as OpenCV expects BGR) frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) depth_map = estimate_depth(frame) # Encode depth map as a base64 image to send back _, buffer = cv2.imencode('.jpg', depth_map) depth_map_base64 = base64.b64encode(buffer).decode('utf-8') # Add the result to the response queue response_queue.put(f"data:image/jpeg;base64,{depth_map_base64}") # Route to serve the HTML template @app.route('/') def index(): return render_template('index.html') # Route to process video frames and return depth map @app.route('/process_frame', methods=['POST']) def process_frame(): data = request.json['image'] # Create a queue to hold the response from the background thread response_queue = queue.Queue() # Start the processing thread thread = threading.Thread(target=process_frame_thread, args=(data, response_queue)) thread.start() # Wait for the thread to complete and get the result from the queue thread.join() depth_map_base64 = response_queue.get() return jsonify({'depth_map': depth_map_base64}) if __name__ == "__main__": app.run(debug=True)