srivatsavdamaraju's picture
Create templates/index.html
cb2d9db verified
raw
history blame
2.6 kB
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Live Depth Map</title>
<style>
#outputImage {
width: 640px;
height: 480px;
}
video {
width: 640px;
height: 480px;
display: block;
margin-bottom: 20px;
}
</style>
</head>
<body>
<h1>Live Depth Map</h1>
<video id="videoElement" autoplay playsinline></video>
<canvas id="canvasElement" style="display: none;"></canvas>
<img id="outputImage" alt="Processed Depth Map" />
<script>
async function startVideo() {
const video = document.getElementById('videoElement');
const stream = await navigator.mediaDevices.getUserMedia({ video: true });
video.srcObject = stream;
video.addEventListener('play', async () => {
const canvas = document.getElementById('canvasElement');
const context = canvas.getContext('2d');
const outputImage = document.getElementById('outputImage');
canvas.width = video.videoWidth;
canvas.height = video.videoHeight;
async function processFrame() {
// Draw the current video frame on the canvas
context.drawImage(video, 0, 0, canvas.width, canvas.height);
// Convert canvas image to base64 format
const frameData = canvas.toDataURL('image/jpeg');
// Send the base64 data to Flask backend for processing
const response = await fetch('/process_frame', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({ image: frameData })
});
const result = await response.json();
const depthMapUrl = result.depth_map;
// Update the displayed image with the processed depth map
outputImage.src = depthMapUrl;
// Continue processing the next frame
requestAnimationFrame(processFrame);
}
// Start the frame processing loop
processFrame();
});
}
// Start capturing video once the page is loaded
window.onload = startVideo;
</script>
</body>
</html>