Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,18 @@
|
|
1 |
import os
|
2 |
from dotenv import load_dotenv
|
3 |
import gradio as gr
|
4 |
-
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
|
5 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
6 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
-
|
|
|
9 |
load_dotenv()
|
|
|
10 |
# Configure the Llama index settings
|
11 |
Settings.llm = HuggingFaceInferenceAPI(
|
12 |
-
model_name="
|
13 |
-
tokenizer_name="
|
14 |
context_window=3000,
|
15 |
token=os.getenv("HF_TOKEN"),
|
16 |
max_new_tokens=512,
|
@@ -24,10 +26,13 @@ Settings.embed_model = HuggingFaceEmbedding(
|
|
24 |
PERSIST_DIR = "db"
|
25 |
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
|
26 |
|
27 |
-
# Ensure
|
28 |
os.makedirs(PDF_DIRECTORY, exist_ok=True)
|
29 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
30 |
|
|
|
|
|
|
|
31 |
def data_ingestion_from_directory():
|
32 |
# Use SimpleDirectoryReader on the directory containing the PDF files
|
33 |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
@@ -40,21 +45,7 @@ def handle_query(query):
|
|
40 |
(
|
41 |
"user",
|
42 |
"""
|
43 |
-
|
44 |
-
Guidelines:
|
45 |
-
Professional Tone:
|
46 |
-
Always maintain a polite, professional, and helpful tone.
|
47 |
-
Use clear and concise language.
|
48 |
-
Single Best Answer:
|
49 |
-
Provide only one comprehensive and accurate answer to each question.
|
50 |
-
Ensure the response is detailed enough to address the user’s inquiry fully.
|
51 |
-
Redirect Personal Questions:
|
52 |
-
If users ask personal questions about the chatbot, redirect them to ask about the company.
|
53 |
-
Example: "For more information about RedfernsTech, please ask me specific questions about our products or services."
|
54 |
-
Company-Centric Responses:
|
55 |
-
Focus on delivering information relevant to RedfernsTech’s products, services, and values.
|
56 |
-
Highlight the benefits and features of RedfernsTech offerings whenever possible.
|
57 |
-
Context:
|
58 |
{context_str}
|
59 |
Question:
|
60 |
{query_str}
|
@@ -67,31 +58,31 @@ def handle_query(query):
|
|
67 |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
68 |
index = load_index_from_storage(storage_context)
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
answer = query_engine.query(query)
|
72 |
|
73 |
if hasattr(answer, 'response'):
|
74 |
-
|
75 |
elif isinstance(answer, dict) and 'response' in answer:
|
76 |
-
|
77 |
else:
|
78 |
-
|
79 |
|
80 |
-
#
|
|
|
81 |
|
82 |
-
|
|
|
|
|
83 |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
84 |
data_ingestion_from_directory()
|
85 |
|
86 |
-
# Example query
|
87 |
-
query = "How do I use the RedfernsTech Q&A assistant?"
|
88 |
-
print("Query:", query)
|
89 |
-
response = handle_query(query)
|
90 |
-
print("Answer:", response)
|
91 |
-
# prompt: create a gradio chatbot for this
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
# Define the input and output components for the Gradio interface
|
96 |
input_component = gr.Textbox(
|
97 |
show_label=False,
|
@@ -100,9 +91,14 @@ input_component = gr.Textbox(
|
|
100 |
|
101 |
output_component = gr.Textbox()
|
102 |
|
|
|
|
|
|
|
|
|
|
|
103 |
# Create the Gradio interface
|
104 |
interface = gr.Interface(
|
105 |
-
fn=
|
106 |
inputs=input_component,
|
107 |
outputs=output_component,
|
108 |
title="RedfernsTech Q&A Chatbot",
|
|
|
1 |
import os
|
2 |
from dotenv import load_dotenv
|
3 |
import gradio as gr
|
4 |
+
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
5 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
6 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
+
|
9 |
+
# Load environment variables
|
10 |
load_dotenv()
|
11 |
+
|
12 |
# Configure the Llama index settings
|
13 |
Settings.llm = HuggingFaceInferenceAPI(
|
14 |
+
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
15 |
+
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
16 |
context_window=3000,
|
17 |
token=os.getenv("HF_TOKEN"),
|
18 |
max_new_tokens=512,
|
|
|
26 |
PERSIST_DIR = "db"
|
27 |
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
|
28 |
|
29 |
+
# Ensure directories exist
|
30 |
os.makedirs(PDF_DIRECTORY, exist_ok=True)
|
31 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
32 |
|
33 |
+
# Variable to store current chat conversation
|
34 |
+
current_chat_history = []
|
35 |
+
|
36 |
def data_ingestion_from_directory():
|
37 |
# Use SimpleDirectoryReader on the directory containing the PDF files
|
38 |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
|
|
45 |
(
|
46 |
"user",
|
47 |
"""
|
48 |
+
You are now the RedFerns Tech chatbot. Your aim is to provide answers to the user based on the conversation flow only.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
{context_str}
|
50 |
Question:
|
51 |
{query_str}
|
|
|
58 |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
59 |
index = load_index_from_storage(storage_context)
|
60 |
|
61 |
+
# Use chat history to enhance response
|
62 |
+
context_str = ""
|
63 |
+
for past_query, response in reversed(current_chat_history):
|
64 |
+
if past_query.strip():
|
65 |
+
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
66 |
+
|
67 |
+
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
|
68 |
answer = query_engine.query(query)
|
69 |
|
70 |
if hasattr(answer, 'response'):
|
71 |
+
response = answer.response
|
72 |
elif isinstance(answer, dict) and 'response' in answer:
|
73 |
+
response = answer['response']
|
74 |
else:
|
75 |
+
response = "Sorry, I couldn't find an answer."
|
76 |
|
77 |
+
# Update current chat history
|
78 |
+
current_chat_history.append((query, response))
|
79 |
|
80 |
+
return response
|
81 |
+
|
82 |
+
# Example usage: Process PDF ingestion from directory
|
83 |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
84 |
data_ingestion_from_directory()
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
# Define the input and output components for the Gradio interface
|
87 |
input_component = gr.Textbox(
|
88 |
show_label=False,
|
|
|
91 |
|
92 |
output_component = gr.Textbox()
|
93 |
|
94 |
+
# Function to handle queries
|
95 |
+
def chatbot_handler(query):
|
96 |
+
response = handle_query(query)
|
97 |
+
return response
|
98 |
+
|
99 |
# Create the Gradio interface
|
100 |
interface = gr.Interface(
|
101 |
+
fn=chatbot_handler,
|
102 |
inputs=input_component,
|
103 |
outputs=output_component,
|
104 |
title="RedfernsTech Q&A Chatbot",
|