|
from dotenv import load_dotenv |
|
import gradio as gr |
|
import os |
|
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings |
|
from llama_index.llms.huggingface import HuggingFaceInferenceAPI |
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
Settings.llm = HuggingFaceInferenceAPI( |
|
model_name="meta-llama/Meta-Llama-3-8B-Instruct", |
|
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", |
|
context_window=3000, |
|
token=os.getenv("HF_TOKEN"), |
|
max_new_tokens=512, |
|
generate_kwargs={"temperature": 0.1}, |
|
) |
|
Settings.embed_model = HuggingFaceEmbedding( |
|
model_name="BAAI/bge-small-en-v1.5" |
|
) |
|
|
|
|
|
PERSIST_DIR = "db" |
|
PDF_DIRECTORY = 'data' |
|
|
|
|
|
os.makedirs(PDF_DIRECTORY, exist_ok=True) |
|
os.makedirs(PERSIST_DIR, exist_ok=True) |
|
|
|
|
|
current_chat_history = [] |
|
|
|
def data_ingestion_from_directory(): |
|
|
|
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() |
|
storage_context = StorageContext.from_defaults() |
|
index = VectorStoreIndex.from_documents(documents) |
|
index.storage_context.persist(persist_dir=PERSIST_DIR) |
|
|
|
def handle_query(query): |
|
chat_text_qa_msgs = [ |
|
( |
|
"user", |
|
""" |
|
Your name is FernAI. Your aim is to provide the best service and information about RedFerns Tech company. You should provide answers based on the conversation flow and your final aim is attract the user to connect our company services. And summarize the answer try to give the answer with less words and effectively. |
|
{context_str} |
|
Question: |
|
{query_str} |
|
""" |
|
) |
|
] |
|
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) |
|
|
|
|
|
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) |
|
index = load_index_from_storage(storage_context) |
|
|
|
|
|
context_str = "" |
|
for past_query, response in reversed(current_chat_history): |
|
if past_query.strip(): |
|
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" |
|
|
|
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) |
|
answer = query_engine.query(query) |
|
|
|
if hasattr(answer, 'response'): |
|
response = answer.response |
|
elif isinstance(answer, dict) and 'response' in answer: |
|
response = answer['response'] |
|
else: |
|
response = "Sorry, I couldn't find an answer." |
|
|
|
|
|
current_chat_history.append((query, response)) |
|
|
|
return response |
|
|
|
|
|
print("Processing PDF ingestion from directory:", PDF_DIRECTORY) |
|
data_ingestion_from_directory() |
|
|
|
|
|
def predict(message,history): |
|
response = handle_query(message) |
|
return response |
|
|
|
|
|
|
|
css = ''' |
|
/* Style the chat container */ |
|
.gradio-container { |
|
display: flex; |
|
flex-direction: column; |
|
width: 450px; |
|
margin: 0 auto; |
|
padding: 20px; |
|
border: 1px solid #ddd; |
|
border-radius: 10px; |
|
background-color: #fff; |
|
box-shadow: 0 4px 8px rgba(0,0,0,0.1); |
|
position: relative; |
|
height: 600px; /* Adjust the height of the container */ |
|
} |
|
|
|
/* Style the logo */ |
|
.gradio-logo { |
|
display: flex; |
|
justify-content: center; |
|
margin-bottom: 20px; |
|
} |
|
|
|
.gradio-logo img { |
|
width: 100%; |
|
max-width: 300px; |
|
} |
|
|
|
/* Style the title */ |
|
.gradio-title { |
|
text-align: center; |
|
font-weight: bold; |
|
font-size: 24px; |
|
margin-bottom: 20px; |
|
color: #4A90E2; |
|
} |
|
|
|
/* Style the chat history */ |
|
.gradio-chat-history { |
|
flex: 1; |
|
overflow-y: auto; |
|
padding: 15px; |
|
border-bottom: 1px solid #ddd; |
|
background-color: #f9f9f9; |
|
border-radius: 5px; |
|
margin-bottom: 10px; |
|
max-height: 500px; /* Increase the height of the chat history */ |
|
} |
|
|
|
/* Style the chat messages */ |
|
.gradio-message { |
|
margin-bottom: 15px; |
|
display: flex; |
|
flex-direction: column; /* Stack messages vertically */ |
|
} |
|
|
|
.gradio-message.user .gradio-message-content { |
|
background-color: #E1FFC7; |
|
align-self: flex-end; |
|
border: 1px solid #c3e6cb; |
|
border-radius: 15px 15px 0 15px; |
|
padding: 10px; |
|
font-size: 16px; |
|
margin-bottom: 5px; |
|
max-width: 80%; |
|
} |
|
|
|
.gradio-message.bot .gradio-message-content { |
|
background-color: #fff; |
|
align-self: flex-start; |
|
border: 1px solid #ced4da; |
|
border-radius: 15px 15px 15px 0; |
|
padding: 10px; |
|
font-size: 16px; |
|
margin-bottom: 5px; |
|
max-width: 80%; |
|
} |
|
|
|
.gradio-message-content { |
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1); |
|
} |
|
|
|
/* Style the footer */ |
|
.gradio-footer { |
|
display: flex; |
|
padding: 10px; |
|
border-top: 1px solid #ddd; |
|
background-color: #F8D7DA; /* Light red background color */ |
|
position: absolute; |
|
bottom: 0; |
|
width: calc(100% - 40px); /* Adjust width to match container padding */ |
|
} |
|
|
|
/* Remove Gradio footer */ |
|
footer { |
|
display: none !important; |
|
background-color: #F8D7DA; |
|
} |
|
''' |
|
|
|
|
|
logo_html = ''' |
|
<div class="gradio-logo"> |
|
<img src="https://redfernstech.com/wp-content/uploads/2024/05/RedfernsLogo_FinalV1.0-3-2048x575.png" alt="Company Logo"> |
|
</div> |
|
''' |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Monochrome(), fill_height=True,css=css) as demo: |
|
gr.HTML(logo_html) |
|
gr.ChatInterface(predict,clear_btn=None, |
|
undo_btn=None, |
|
retry_btn=None) |
|
|
|
|
|
demo.launch() |
|
|
|
|
|
|
|
|