File size: 3,335 Bytes
3430157
fada25c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3430157
fada25c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f99df60
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
from dotenv import load_dotenv
import gradio as gr
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers import SentenceTransformer
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
load_dotenv()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="google/gemma-1.1-7b-it",
    tokenizer_name="google/gemma-1.1-7b-it",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'  # Changed to the directory containing PDFs

# Ensure PDF directory exists
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

def data_ingestion_from_directory():
    # Use SimpleDirectoryReader on the directory containing the PDF files
    documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
            You are a Q&A assistant named RedfernsTech, created by the RedfernsTech team. You have been designed to provide accurate answers based on the context provided.
            Context:
            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)

    # Load index from storage
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)

    query_engine = index.as_query_engine(text_qa_template=text_qa_template)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        return answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        return answer['response']
    else:
        return "Sorry, I couldn't find an answer."

# Example usage

    # Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()

    # Example query
query = "How do I use the RedfernsTech Q&A assistant?"
print("Query:", query)
response = handle_query(query)
print("Answer:", response)
# prompt: create a gradio chatbot for this



# Define the input and output components for the Gradio interface
input_component = gr.Textbox(
    show_label=False,
    placeholder="Ask me anything about the document..."
)

output_component = gr.Textbox()

# Create the Gradio interface
interface = gr.Interface(
    fn=handle_query,
    inputs=input_component,
    outputs=output_component,
    title="RedfernsTech Q&A Chatbot",
    description="Ask me anything about the uploaded document."
)

# Launch the Gradio interface
interface.launch()