srini047's picture
Update app.py
f652f07
raw
history blame contribute delete
618 Bytes
import gradio as gr
from salient import vectr, clf
from profanity import pf
pf.set_censor("@")
def predict(text):
senti = clf.predict(vectr.transform([text]))
if(pf.is_profane(text)):
prof = True
censored_text = pf.censor(text)
else:
prof = False
censored_text = pf.censor(text)
if (int(senti)):
text_sent = "Salient"
else:
text_sent = "Not salient"
return {
"salient": text_sent,
"profanity": prof,
"censored_text": censored_text
}
demo = gr.Interface(fn=predict, inputs="text", outputs="json")
demo.launch()