sradc commited on
Commit
8b11c67
·
1 Parent(s): cb81588

nb to filter images

Browse files
Files changed (3) hide show
  1. _dev/filter_images.ipynb +333 -0
  2. poetry.lock +282 -1
  3. pyproject.toml +1 -0
_dev/filter_images.ipynb ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 5,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "from pipeline.clip_wrapper import ClipWrapper\n",
10
+ "from pipeline.process_videos import DATAFRAME_PATH\n",
11
+ "import pandas as pd\n",
12
+ "import faiss\n",
13
+ "import numpy as np\n",
14
+ "from PIL import Image\n",
15
+ "from io import BytesIO\n",
16
+ "import base64\n",
17
+ "from tqdm import tqdm\n",
18
+ "import numpy as np\n",
19
+ "import matplotlib.pyplot as plt"
20
+ ]
21
+ },
22
+ {
23
+ "cell_type": "code",
24
+ "execution_count": 2,
25
+ "metadata": {},
26
+ "outputs": [],
27
+ "source": [
28
+ "df = pd.read_parquet(DATAFRAME_PATH)\n",
29
+ "dim_columns = df.filter(regex=\"^dim_\").columns"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": 14,
35
+ "metadata": {},
36
+ "outputs": [
37
+ {
38
+ "name": "stdout",
39
+ "output_type": "stream",
40
+ "text": [
41
+ "71761\n"
42
+ ]
43
+ }
44
+ ],
45
+ "source": [
46
+ "print(len(df))"
47
+ ]
48
+ },
49
+ {
50
+ "attachments": {},
51
+ "cell_type": "markdown",
52
+ "metadata": {},
53
+ "source": [
54
+ "## Filter images with low stds (to remove blank images)"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": 10,
60
+ "metadata": {},
61
+ "outputs": [
62
+ {
63
+ "name": "stderr",
64
+ "output_type": "stream",
65
+ "text": [
66
+ "100%|██████████| 71761/71761 [05:17<00:00, 226.16it/s]\n"
67
+ ]
68
+ }
69
+ ],
70
+ "source": [
71
+ "img_stds = []\n",
72
+ "for _, row in tqdm(df.iterrows(), total=len(df)):\n",
73
+ " img = Image.open(BytesIO(base64.b64decode(row[\"base64_image\"])))\n",
74
+ " img = img.resize((128, img.height * 128 // img.width))\n",
75
+ " img = np.array(img)\n",
76
+ " img = img.reshape(-1, 3)\n",
77
+ " img_stds.append(img.std(axis=0))"
78
+ ]
79
+ },
80
+ {
81
+ "cell_type": "code",
82
+ "execution_count": null,
83
+ "metadata": {},
84
+ "outputs": [],
85
+ "source": [
86
+ "img_stds_mean = np.array(img_stds).mean(axis=1)\n",
87
+ "plt.hist(img_stds_mean, bins=200)"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": 27,
93
+ "metadata": {},
94
+ "outputs": [
95
+ {
96
+ "name": "stdout",
97
+ "output_type": "stream",
98
+ "text": [
99
+ "69821\n"
100
+ ]
101
+ }
102
+ ],
103
+ "source": [
104
+ "df_ = df.copy()\n",
105
+ "# filter out images with std < 2\n",
106
+ "df_[\"img_std\"] = img_stds_mean\n",
107
+ "df_ = df_[df_[\"img_std\"] > 5]\n",
108
+ "print(len(df_))"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "code",
113
+ "execution_count": 28,
114
+ "metadata": {},
115
+ "outputs": [],
116
+ "source": [
117
+ "# overwrite the dataframe\n",
118
+ "df_.to_parquet(DATAFRAME_PATH, index=False)"
119
+ ]
120
+ },
121
+ {
122
+ "attachments": {},
123
+ "cell_type": "markdown",
124
+ "metadata": {},
125
+ "source": [
126
+ "---\n",
127
+ "\n",
128
+ "## WIP below"
129
+ ]
130
+ },
131
+ {
132
+ "cell_type": "code",
133
+ "execution_count": 52,
134
+ "metadata": {},
135
+ "outputs": [],
136
+ "source": [
137
+ "embedder = ClipWrapper().texts2vec\n",
138
+ "metadata = df.drop(columns=dim_columns)\n",
139
+ "index = faiss.IndexFlatIP(len(dim_columns))\n",
140
+ "index.add(np.ascontiguousarray(df[dim_columns].to_numpy(np.float32)))\n",
141
+ "\n",
142
+ "def search(query: str, k=5):\n",
143
+ " v = embedder([query]).detach().numpy()\n",
144
+ " (distances,), (indices,) = index.search(v, k)\n",
145
+ " return distances, indices"
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "code",
150
+ "execution_count": null,
151
+ "metadata": {},
152
+ "outputs": [],
153
+ "source": [
154
+ "num_clusters = 128\n",
155
+ "num_imgs_to_show = 10\n",
156
+ "\n",
157
+ "kmeans = faiss.Kmeans(len(dim_columns), num_clusters, niter=20, verbose=True)\n",
158
+ "kmeans.train(df[dim_columns].to_numpy(np.float32))\n",
159
+ "\n",
160
+ "# print 4 images from each cluster \n",
161
+ "for i in range(num_clusters):\n",
162
+ " # get the closest images to the cluster center\n",
163
+ " _, (indices,) = index.search(kmeans.centroids[i].reshape(1, -1), num_imgs_to_show)\n",
164
+ "\n",
165
+ " # get the metadata for the closest images\n",
166
+ " closest = metadata.iloc[indices]\n",
167
+ "\n",
168
+ " print(f\"Cluster {i}\")\n",
169
+ "\n",
170
+ " # display the images\n",
171
+ " imgs = []\n",
172
+ " for _, row in closest.iterrows():\n",
173
+ " img = Image.open(BytesIO(base64.b64decode(row[\"base64_image\"])))\n",
174
+ " imgs.append(img.resize((128, img.height * 128 // img.width)))\n",
175
+ " # combine the images into a single image\n",
176
+ " widths, heights = zip(*(i.size for i in imgs))\n",
177
+ " total_width = sum(widths)\n",
178
+ " max_height = max(heights)\n",
179
+ " new_im = Image.new('RGB', (total_width, max_height))\n",
180
+ " x_offset = 0\n",
181
+ " for im in imgs:\n",
182
+ " new_im.paste(im, (x_offset,0))\n",
183
+ " x_offset += im.size[0]\n",
184
+ " display(new_im)\n"
185
+ ]
186
+ },
187
+ {
188
+ "cell_type": "code",
189
+ "execution_count": null,
190
+ "metadata": {},
191
+ "outputs": [],
192
+ "source": [
193
+ "similar_clusters = []\n",
194
+ "# identify clusters where the images are all very similar\n",
195
+ "for i in range(num_clusters):\n",
196
+ " # get the closest images to the cluster center\n",
197
+ " _, (indices,) = index.search(kmeans.centroids[i].reshape(1, -1), 1000)\n",
198
+ " # get the metadata for the closest images\n",
199
+ " closest = df.iloc[indices]\n",
200
+ " # get the distances between the images and the cluster center\n",
201
+ " distances = np.linalg.norm(closest[dim_columns] - kmeans.centroids[i], axis=1)\n",
202
+ " # if all the distances are very small, then the images are all very similar\n",
203
+ " if np.all(distances < 0.3):\n",
204
+ " similar_clusters.append(i)\n",
205
+ " print(f\"Cluster {i} is very similar\")\n",
206
+ " closest = metadata.iloc[indices]\n",
207
+ " imgs = []\n",
208
+ " for _, row in closest.iterrows():\n",
209
+ " img = Image.open(BytesIO(base64.b64decode(row[\"base64_image\"])))\n",
210
+ " imgs.append(img.resize((128, img.height * 128 // img.width)))\n",
211
+ " widths, heights = zip(*(i.size for i in imgs))\n",
212
+ " total_width = sum(widths)\n",
213
+ " max_height = max(heights)\n",
214
+ " new_im = Image.new('RGB', (total_width, max_height))\n",
215
+ " x_offset = 0\n",
216
+ " for im in imgs:\n",
217
+ " new_im.paste(im, (x_offset,0))\n",
218
+ " x_offset += im.size[0]\n",
219
+ " display(new_im)"
220
+ ]
221
+ },
222
+ {
223
+ "cell_type": "code",
224
+ "execution_count": null,
225
+ "metadata": {},
226
+ "outputs": [],
227
+ "source": [
228
+ "for i in similar_clusters:\n",
229
+ " # get the closest images to the cluster center\n",
230
+ " _, (indices,) = index.search(kmeans.centroids[i].reshape(1, -1), num_imgs_to_show)\n",
231
+ " # get the metadata for the closest images\n",
232
+ " closest = df.iloc[indices]\n",
233
+ " # get the distances between the images and the cluster center\n",
234
+ " distances = np.linalg.norm(closest[dim_columns] - kmeans.centroids[i], axis=1)\n",
235
+ " # if all the distances are very small, then the images are all very similar\n",
236
+ " print(len(distances))\n",
237
+ " # if np.all(distances < 0.2):\n",
238
+ " # similar_clusters.append(i)\n",
239
+ " # print(f\"Cluster {i} is very similar\")\n",
240
+ " # closest = metadata.iloc[indices]\n",
241
+ " # imgs = []\n",
242
+ " # for _, row in closest.iterrows():\n",
243
+ " # img = Image.open(BytesIO(base64.b64decode(row[\"base64_image\"])))\n",
244
+ " # imgs.append(img.resize((128, img.height * 128 // img.width)))\n",
245
+ " # widths, heights = zip(*(i.size for i in imgs))\n",
246
+ " # total_width = sum(widths)\n",
247
+ " # max_height = max(heights)\n",
248
+ " # new_im = Image.new('RGB', (total_width, max_height))\n",
249
+ " # x_offset = 0\n",
250
+ " # for im in imgs:\n",
251
+ " # new_im.paste(im, (x_offset,0))\n",
252
+ " # x_offset += im.size[0]\n",
253
+ " # display(new_im)"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": 64,
259
+ "metadata": {},
260
+ "outputs": [
261
+ {
262
+ "name": "stdout",
263
+ "output_type": "stream",
264
+ "text": [
265
+ "Sampling a subset of 32768 / 71761 for training\n",
266
+ "Clustering 32768 points in 512D to 128 clusters, redo 1 times, 20 iterations\n",
267
+ " Preprocessing in 0.06 s\n",
268
+ " Iteration 19 (0.31 s, search 0.26 s): objective=8657.27 imbalance=1.284 nsplit=0 \n"
269
+ ]
270
+ }
271
+ ],
272
+ "source": [
273
+ "# cluster the vectors\n",
274
+ "kmeans = faiss.Kmeans(len(dim_columns), 128, niter=20, verbose=True)\n",
275
+ "kmeans.train(df[dim_columns].to_numpy(np.float32))\n",
276
+ "# D, I = kmeans.index.search(df[dim_columns].to_numpy(np.float32), 1)\n",
277
+ "\n",
278
+ "# identify the cluster of the query\n",
279
+ "# query = \"empty black image with nothing in it\"\n",
280
+ "# v = embedder([query]).detach().numpy()\n",
281
+ "# D, I = kmeans.index.search(v, 100)\n",
282
+ "\n",
283
+ "# print images from each cluster"
284
+ ]
285
+ },
286
+ {
287
+ "cell_type": "code",
288
+ "execution_count": null,
289
+ "metadata": {},
290
+ "outputs": [],
291
+ "source": []
292
+ },
293
+ {
294
+ "cell_type": "code",
295
+ "execution_count": 51,
296
+ "metadata": {},
297
+ "outputs": [],
298
+ "source": [
299
+ "# distances, indices = semantic_searcher.search(\"empty black image with nothing in it\", k=2000)\n",
300
+ "\n",
301
+ "# # for idx in indices:\n",
302
+ "# # img = Image.open(BytesIO(base64.b64decode(df.iloc[idx][\"base64_image\"])))\n",
303
+ "# # display(img.resize((256, img.height * 256 // img.width)))\n",
304
+ "# for i in range(10):\n",
305
+ "# idx = indices[-1 - i]\n",
306
+ "# img = Image.open(BytesIO(base64.b64decode(df.iloc[idx][\"base64_image\"])))\n",
307
+ "# display(img.resize((256, img.height * 256 // img.width)))"
308
+ ]
309
+ }
310
+ ],
311
+ "metadata": {
312
+ "kernelspec": {
313
+ "display_name": "visual-content-search-over-videos",
314
+ "language": "python",
315
+ "name": "python3"
316
+ },
317
+ "language_info": {
318
+ "codemirror_mode": {
319
+ "name": "ipython",
320
+ "version": 3
321
+ },
322
+ "file_extension": ".py",
323
+ "mimetype": "text/x-python",
324
+ "name": "python",
325
+ "nbconvert_exporter": "python",
326
+ "pygments_lexer": "ipython3",
327
+ "version": "3.9.16"
328
+ },
329
+ "orig_nbformat": 4
330
+ },
331
+ "nbformat": 4,
332
+ "nbformat_minor": 2
333
+ }
poetry.lock CHANGED
@@ -651,6 +651,91 @@ lint = ["black (>=22.6.0)", "mdformat (>0.7)", "mdformat-gfm (>=0.3.5)", "ruff (
651
  test = ["pytest"]
652
  typing = ["mypy (>=0.990)"]
653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
654
  [[package]]
655
  name = "debugpy"
656
  version = "1.6.7"
@@ -802,6 +887,31 @@ files = [
802
  docs = ["furo (>=2023.3.27)", "sphinx (>=6.1.3)", "sphinx-autodoc-typehints (>=1.23,!=1.23.4)"]
803
  testing = ["covdefaults (>=2.3)", "coverage (>=7.2.3)", "diff-cover (>=7.5)", "pytest (>=7.3.1)", "pytest-cov (>=4)", "pytest-mock (>=3.10)", "pytest-timeout (>=2.1)"]
804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805
  [[package]]
806
  name = "fqdn"
807
  version = "1.5.1"
@@ -937,6 +1047,24 @@ docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker
937
  perf = ["ipython"]
938
  testing = ["flake8 (<5)", "flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)"]
939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
940
  [[package]]
941
  name = "iniconfig"
942
  version = "2.0.0"
@@ -1432,6 +1560,83 @@ docs = ["autodoc-traits", "docutils (<0.20)", "jinja2 (<3.2.0)", "mistune (<3)",
1432
  openapi = ["openapi-core (>=0.16.1,<0.17.0)", "ruamel-yaml"]
1433
  test = ["hatch", "ipykernel", "jupyterlab-server[openapi]", "openapi-spec-validator (>=0.5.1,<0.6.0)", "pytest (>=7.0)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter[server] (>=0.6.2)", "pytest-timeout", "requests-mock", "sphinxcontrib-spelling", "strict-rfc3339", "werkzeug"]
1434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435
  [[package]]
1436
  name = "lxml"
1437
  version = "4.9.2"
@@ -1607,6 +1812,68 @@ files = [
1607
  {file = "MarkupSafe-2.1.2.tar.gz", hash = "sha256:abcabc8c2b26036d62d4c746381a6f7cf60aafcc653198ad678306986b09450d"},
1608
  ]
1609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1610
  [[package]]
1611
  name = "matplotlib-inline"
1612
  version = "0.1.6"
@@ -2415,6 +2682,20 @@ files = [
2415
  {file = "Pympler-1.0.1.tar.gz", hash = "sha256:993f1a3599ca3f4fcd7160c7545ad06310c9e12f70174ae7ae8d4e25f6c5d3fa"},
2416
  ]
2417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418
  [[package]]
2419
  name = "pyrsistent"
2420
  version = "0.19.3"
@@ -3634,4 +3915,4 @@ testing = ["big-O", "flake8 (<5)", "jaraco.functools", "jaraco.itertools", "more
3634
  [metadata]
3635
  lock-version = "2.0"
3636
  python-versions = ">=3.9,<3.9.7 || >3.9.7,<4.0"
3637
- content-hash = "88cd0d179ce1a3107e48826327a774c9ad6fd4b8b3af0a8a415745eaea71c389"
 
651
  test = ["pytest"]
652
  typing = ["mypy (>=0.990)"]
653
 
654
+ [[package]]
655
+ name = "contourpy"
656
+ version = "1.0.7"
657
+ description = "Python library for calculating contours of 2D quadrilateral grids"
658
+ optional = false
659
+ python-versions = ">=3.8"
660
+ files = [
661
+ {file = "contourpy-1.0.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:95c3acddf921944f241b6773b767f1cbce71d03307270e2d769fd584d5d1092d"},
662
+ {file = "contourpy-1.0.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:fc1464c97579da9f3ab16763c32e5c5d5bb5fa1ec7ce509a4ca6108b61b84fab"},
663
+ {file = "contourpy-1.0.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8acf74b5d383414401926c1598ed77825cd530ac7b463ebc2e4f46638f56cce6"},
664
+ {file = "contourpy-1.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c71fdd8f1c0f84ffd58fca37d00ca4ebaa9e502fb49825484da075ac0b0b803"},
665
+ {file = "contourpy-1.0.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f99e9486bf1bb979d95d5cffed40689cb595abb2b841f2991fc894b3452290e8"},
666
+ {file = "contourpy-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87f4d8941a9564cda3f7fa6a6cd9b32ec575830780677932abdec7bcb61717b0"},
667
+ {file = "contourpy-1.0.7-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9e20e5a1908e18aaa60d9077a6d8753090e3f85ca25da6e25d30dc0a9e84c2c6"},
668
+ {file = "contourpy-1.0.7-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a877ada905f7d69b2a31796c4b66e31a8068b37aa9b78832d41c82fc3e056ddd"},
669
+ {file = "contourpy-1.0.7-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6381fa66866b0ea35e15d197fc06ac3840a9b2643a6475c8fff267db8b9f1e69"},
670
+ {file = "contourpy-1.0.7-cp310-cp310-win32.whl", hash = "sha256:3c184ad2433635f216645fdf0493011a4667e8d46b34082f5a3de702b6ec42e3"},
671
+ {file = "contourpy-1.0.7-cp310-cp310-win_amd64.whl", hash = "sha256:3caea6365b13119626ee996711ab63e0c9d7496f65641f4459c60a009a1f3e80"},
672
+ {file = "contourpy-1.0.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ed33433fc3820263a6368e532f19ddb4c5990855e4886088ad84fd7c4e561c71"},
673
+ {file = "contourpy-1.0.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:38e2e577f0f092b8e6774459317c05a69935a1755ecfb621c0a98f0e3c09c9a5"},
674
+ {file = "contourpy-1.0.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ae90d5a8590e5310c32a7630b4b8618cef7563cebf649011da80874d0aa8f414"},
675
+ {file = "contourpy-1.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:130230b7e49825c98edf0b428b7aa1125503d91732735ef897786fe5452b1ec2"},
676
+ {file = "contourpy-1.0.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58569c491e7f7e874f11519ef46737cea1d6eda1b514e4eb5ac7dab6aa864d02"},
677
+ {file = "contourpy-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:54d43960d809c4c12508a60b66cb936e7ed57d51fb5e30b513934a4a23874fae"},
678
+ {file = "contourpy-1.0.7-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:152fd8f730c31fd67fe0ffebe1df38ab6a669403da93df218801a893645c6ccc"},
679
+ {file = "contourpy-1.0.7-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:9056c5310eb1daa33fc234ef39ebfb8c8e2533f088bbf0bc7350f70a29bde1ac"},
680
+ {file = "contourpy-1.0.7-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a9d7587d2fdc820cc9177139b56795c39fb8560f540bba9ceea215f1f66e1566"},
681
+ {file = "contourpy-1.0.7-cp311-cp311-win32.whl", hash = "sha256:4ee3ee247f795a69e53cd91d927146fb16c4e803c7ac86c84104940c7d2cabf0"},
682
+ {file = "contourpy-1.0.7-cp311-cp311-win_amd64.whl", hash = "sha256:5caeacc68642e5f19d707471890f037a13007feba8427eb7f2a60811a1fc1350"},
683
+ {file = "contourpy-1.0.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fd7dc0e6812b799a34f6d12fcb1000539098c249c8da54f3566c6a6461d0dbad"},
684
+ {file = "contourpy-1.0.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0f9d350b639db6c2c233d92c7f213d94d2e444d8e8fc5ca44c9706cf72193772"},
685
+ {file = "contourpy-1.0.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e96a08b62bb8de960d3a6afbc5ed8421bf1a2d9c85cc4ea73f4bc81b4910500f"},
686
+ {file = "contourpy-1.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:031154ed61f7328ad7f97662e48660a150ef84ee1bc8876b6472af88bf5a9b98"},
687
+ {file = "contourpy-1.0.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2e9ebb4425fc1b658e13bace354c48a933b842d53c458f02c86f371cecbedecc"},
688
+ {file = "contourpy-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efb8f6d08ca7998cf59eaf50c9d60717f29a1a0a09caa46460d33b2924839dbd"},
689
+ {file = "contourpy-1.0.7-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6c180d89a28787e4b73b07e9b0e2dac7741261dbdca95f2b489c4f8f887dd810"},
690
+ {file = "contourpy-1.0.7-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:b8d587cc39057d0afd4166083d289bdeff221ac6d3ee5046aef2d480dc4b503c"},
691
+ {file = "contourpy-1.0.7-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:769eef00437edf115e24d87f8926955f00f7704bede656ce605097584f9966dc"},
692
+ {file = "contourpy-1.0.7-cp38-cp38-win32.whl", hash = "sha256:62398c80ef57589bdbe1eb8537127321c1abcfdf8c5f14f479dbbe27d0322e66"},
693
+ {file = "contourpy-1.0.7-cp38-cp38-win_amd64.whl", hash = "sha256:57119b0116e3f408acbdccf9eb6ef19d7fe7baf0d1e9aaa5381489bc1aa56556"},
694
+ {file = "contourpy-1.0.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:30676ca45084ee61e9c3da589042c24a57592e375d4b138bd84d8709893a1ba4"},
695
+ {file = "contourpy-1.0.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3e927b3868bd1e12acee7cc8f3747d815b4ab3e445a28d2e5373a7f4a6e76ba1"},
696
+ {file = "contourpy-1.0.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:366a0cf0fc079af5204801786ad7a1c007714ee3909e364dbac1729f5b0849e5"},
697
+ {file = "contourpy-1.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89ba9bb365446a22411f0673abf6ee1fea3b2cf47b37533b970904880ceb72f3"},
698
+ {file = "contourpy-1.0.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:71b0bf0c30d432278793d2141362ac853859e87de0a7dee24a1cea35231f0d50"},
699
+ {file = "contourpy-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7281244c99fd7c6f27c1c6bfafba878517b0b62925a09b586d88ce750a016d2"},
700
+ {file = "contourpy-1.0.7-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b6d0f9e1d39dbfb3977f9dd79f156c86eb03e57a7face96f199e02b18e58d32a"},
701
+ {file = "contourpy-1.0.7-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7f6979d20ee5693a1057ab53e043adffa1e7418d734c1532e2d9e915b08d8ec2"},
702
+ {file = "contourpy-1.0.7-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5dd34c1ae752515318224cba7fc62b53130c45ac6a1040c8b7c1a223c46e8967"},
703
+ {file = "contourpy-1.0.7-cp39-cp39-win32.whl", hash = "sha256:c5210e5d5117e9aec8c47d9156d1d3835570dd909a899171b9535cb4a3f32693"},
704
+ {file = "contourpy-1.0.7-cp39-cp39-win_amd64.whl", hash = "sha256:60835badb5ed5f4e194a6f21c09283dd6e007664a86101431bf870d9e86266c4"},
705
+ {file = "contourpy-1.0.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ce41676b3d0dd16dbcfabcc1dc46090aaf4688fd6e819ef343dbda5a57ef0161"},
706
+ {file = "contourpy-1.0.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5a011cf354107b47c58ea932d13b04d93c6d1d69b8b6dce885e642531f847566"},
707
+ {file = "contourpy-1.0.7-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:31a55dccc8426e71817e3fe09b37d6d48ae40aae4ecbc8c7ad59d6893569c436"},
708
+ {file = "contourpy-1.0.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:69f8ff4db108815addd900a74df665e135dbbd6547a8a69333a68e1f6e368ac2"},
709
+ {file = "contourpy-1.0.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:efe99298ba37e37787f6a2ea868265465410822f7bea163edcc1bd3903354ea9"},
710
+ {file = "contourpy-1.0.7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a1e97b86f73715e8670ef45292d7cc033548266f07d54e2183ecb3c87598888f"},
711
+ {file = "contourpy-1.0.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc331c13902d0f50845099434cd936d49d7a2ca76cb654b39691974cb1e4812d"},
712
+ {file = "contourpy-1.0.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:24847601071f740837aefb730e01bd169fbcaa610209779a78db7ebb6e6a7051"},
713
+ {file = "contourpy-1.0.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abf298af1e7ad44eeb93501e40eb5a67abbf93b5d90e468d01fc0c4451971afa"},
714
+ {file = "contourpy-1.0.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:64757f6460fc55d7e16ed4f1de193f362104285c667c112b50a804d482777edd"},
715
+ {file = "contourpy-1.0.7.tar.gz", hash = "sha256:d8165a088d31798b59e91117d1f5fc3df8168d8b48c4acc10fc0df0d0bdbcc5e"},
716
+ ]
717
+
718
+ [package.dependencies]
719
+ numpy = ">=1.16"
720
+
721
+ [package.extras]
722
+ bokeh = ["bokeh", "chromedriver", "selenium"]
723
+ docs = ["furo", "sphinx-copybutton"]
724
+ mypy = ["contourpy[bokeh]", "docutils-stubs", "mypy (==0.991)", "types-Pillow"]
725
+ test = ["Pillow", "matplotlib", "pytest"]
726
+ test-no-images = ["pytest"]
727
+
728
+ [[package]]
729
+ name = "cycler"
730
+ version = "0.11.0"
731
+ description = "Composable style cycles"
732
+ optional = false
733
+ python-versions = ">=3.6"
734
+ files = [
735
+ {file = "cycler-0.11.0-py3-none-any.whl", hash = "sha256:3a27e95f763a428a739d2add979fa7494c912a32c17c4c38c4d5f082cad165a3"},
736
+ {file = "cycler-0.11.0.tar.gz", hash = "sha256:9c87405839a19696e837b3b818fed3f5f69f16f1eec1a1ad77e043dcea9c772f"},
737
+ ]
738
+
739
  [[package]]
740
  name = "debugpy"
741
  version = "1.6.7"
 
887
  docs = ["furo (>=2023.3.27)", "sphinx (>=6.1.3)", "sphinx-autodoc-typehints (>=1.23,!=1.23.4)"]
888
  testing = ["covdefaults (>=2.3)", "coverage (>=7.2.3)", "diff-cover (>=7.5)", "pytest (>=7.3.1)", "pytest-cov (>=4)", "pytest-mock (>=3.10)", "pytest-timeout (>=2.1)"]
889
 
890
+ [[package]]
891
+ name = "fonttools"
892
+ version = "4.39.4"
893
+ description = "Tools to manipulate font files"
894
+ optional = false
895
+ python-versions = ">=3.8"
896
+ files = [
897
+ {file = "fonttools-4.39.4-py3-none-any.whl", hash = "sha256:106caf6167c4597556b31a8d9175a3fdc0356fdcd70ab19973c3b0d4c893c461"},
898
+ {file = "fonttools-4.39.4.zip", hash = "sha256:dba8d7cdb8e2bac1b3da28c5ed5960de09e59a2fe7e63bb73f5a59e57b0430d2"},
899
+ ]
900
+
901
+ [package.extras]
902
+ all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0,<5)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.0.0)", "xattr", "zopfli (>=0.1.4)"]
903
+ graphite = ["lz4 (>=1.7.4.2)"]
904
+ interpolatable = ["munkres", "scipy"]
905
+ lxml = ["lxml (>=4.0,<5)"]
906
+ pathops = ["skia-pathops (>=0.5.0)"]
907
+ plot = ["matplotlib"]
908
+ repacker = ["uharfbuzz (>=0.23.0)"]
909
+ symfont = ["sympy"]
910
+ type1 = ["xattr"]
911
+ ufo = ["fs (>=2.2.0,<3)"]
912
+ unicode = ["unicodedata2 (>=15.0.0)"]
913
+ woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"]
914
+
915
  [[package]]
916
  name = "fqdn"
917
  version = "1.5.1"
 
1047
  perf = ["ipython"]
1048
  testing = ["flake8 (<5)", "flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)"]
1049
 
1050
+ [[package]]
1051
+ name = "importlib-resources"
1052
+ version = "5.12.0"
1053
+ description = "Read resources from Python packages"
1054
+ optional = false
1055
+ python-versions = ">=3.7"
1056
+ files = [
1057
+ {file = "importlib_resources-5.12.0-py3-none-any.whl", hash = "sha256:7b1deeebbf351c7578e09bf2f63fa2ce8b5ffec296e0d349139d43cca061a81a"},
1058
+ {file = "importlib_resources-5.12.0.tar.gz", hash = "sha256:4be82589bf5c1d7999aedf2a45159d10cb3ca4f19b2271f8792bc8e6da7b22f6"},
1059
+ ]
1060
+
1061
+ [package.dependencies]
1062
+ zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""}
1063
+
1064
+ [package.extras]
1065
+ docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
1066
+ testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"]
1067
+
1068
  [[package]]
1069
  name = "iniconfig"
1070
  version = "2.0.0"
 
1560
  openapi = ["openapi-core (>=0.16.1,<0.17.0)", "ruamel-yaml"]
1561
  test = ["hatch", "ipykernel", "jupyterlab-server[openapi]", "openapi-spec-validator (>=0.5.1,<0.6.0)", "pytest (>=7.0)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter[server] (>=0.6.2)", "pytest-timeout", "requests-mock", "sphinxcontrib-spelling", "strict-rfc3339", "werkzeug"]
1562
 
1563
+ [[package]]
1564
+ name = "kiwisolver"
1565
+ version = "1.4.4"
1566
+ description = "A fast implementation of the Cassowary constraint solver"
1567
+ optional = false
1568
+ python-versions = ">=3.7"
1569
+ files = [
1570
+ {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2f5e60fabb7343a836360c4f0919b8cd0d6dbf08ad2ca6b9cf90bf0c76a3c4f6"},
1571
+ {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:10ee06759482c78bdb864f4109886dff7b8a56529bc1609d4f1112b93fe6423c"},
1572
+ {file = "kiwisolver-1.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c79ebe8f3676a4c6630fd3f777f3cfecf9289666c84e775a67d1d358578dc2e3"},
1573
+ {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:abbe9fa13da955feb8202e215c4018f4bb57469b1b78c7a4c5c7b93001699938"},
1574
+ {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7577c1987baa3adc4b3c62c33bd1118c3ef5c8ddef36f0f2c950ae0b199e100d"},
1575
+ {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8ad8285b01b0d4695102546b342b493b3ccc6781fc28c8c6a1bb63e95d22f09"},
1576
+ {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ed58b8acf29798b036d347791141767ccf65eee7f26bde03a71c944449e53de"},
1577
+ {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a68b62a02953b9841730db7797422f983935aeefceb1679f0fc85cbfbd311c32"},
1578
+ {file = "kiwisolver-1.4.4-cp310-cp310-win32.whl", hash = "sha256:e92a513161077b53447160b9bd8f522edfbed4bd9759e4c18ab05d7ef7e49408"},
1579
+ {file = "kiwisolver-1.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:3fe20f63c9ecee44560d0e7f116b3a747a5d7203376abeea292ab3152334d004"},
1580
+ {file = "kiwisolver-1.4.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e0ea21f66820452a3f5d1655f8704a60d66ba1191359b96541eaf457710a5fc6"},
1581
+ {file = "kiwisolver-1.4.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bc9db8a3efb3e403e4ecc6cd9489ea2bac94244f80c78e27c31dcc00d2790ac2"},
1582
+ {file = "kiwisolver-1.4.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d5b61785a9ce44e5a4b880272baa7cf6c8f48a5180c3e81c59553ba0cb0821ca"},
1583
+ {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c2dbb44c3f7e6c4d3487b31037b1bdbf424d97687c1747ce4ff2895795c9bf69"},
1584
+ {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6295ecd49304dcf3bfbfa45d9a081c96509e95f4b9d0eb7ee4ec0530c4a96514"},
1585
+ {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4bd472dbe5e136f96a4b18f295d159d7f26fd399136f5b17b08c4e5f498cd494"},
1586
+ {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf7d9fce9bcc4752ca4a1b80aabd38f6d19009ea5cbda0e0856983cf6d0023f5"},
1587
+ {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78d6601aed50c74e0ef02f4204da1816147a6d3fbdc8b3872d263338a9052c51"},
1588
+ {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:877272cf6b4b7e94c9614f9b10140e198d2186363728ed0f701c6eee1baec1da"},
1589
+ {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:db608a6757adabb32f1cfe6066e39b3706d8c3aa69bbc353a5b61edad36a5cb4"},
1590
+ {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:5853eb494c71e267912275e5586fe281444eb5e722de4e131cddf9d442615626"},
1591
+ {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:f0a1dbdb5ecbef0d34eb77e56fcb3e95bbd7e50835d9782a45df81cc46949750"},
1592
+ {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:283dffbf061a4ec60391d51e6155e372a1f7a4f5b15d59c8505339454f8989e4"},
1593
+ {file = "kiwisolver-1.4.4-cp311-cp311-win32.whl", hash = "sha256:d06adcfa62a4431d404c31216f0f8ac97397d799cd53800e9d3efc2fbb3cf14e"},
1594
+ {file = "kiwisolver-1.4.4-cp311-cp311-win_amd64.whl", hash = "sha256:e7da3fec7408813a7cebc9e4ec55afed2d0fd65c4754bc376bf03498d4e92686"},
1595
+ {file = "kiwisolver-1.4.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:62ac9cc684da4cf1778d07a89bf5f81b35834cb96ca523d3a7fb32509380cbf6"},
1596
+ {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41dae968a94b1ef1897cb322b39360a0812661dba7c682aa45098eb8e193dbdf"},
1597
+ {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02f79693ec433cb4b5f51694e8477ae83b3205768a6fb48ffba60549080e295b"},
1598
+ {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d0611a0a2a518464c05ddd5a3a1a0e856ccc10e67079bb17f265ad19ab3c7597"},
1599
+ {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:db5283d90da4174865d520e7366801a93777201e91e79bacbac6e6927cbceede"},
1600
+ {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1041feb4cda8708ce73bb4dcb9ce1ccf49d553bf87c3954bdfa46f0c3f77252c"},
1601
+ {file = "kiwisolver-1.4.4-cp37-cp37m-win32.whl", hash = "sha256:a553dadda40fef6bfa1456dc4be49b113aa92c2a9a9e8711e955618cd69622e3"},
1602
+ {file = "kiwisolver-1.4.4-cp37-cp37m-win_amd64.whl", hash = "sha256:03baab2d6b4a54ddbb43bba1a3a2d1627e82d205c5cf8f4c924dc49284b87166"},
1603
+ {file = "kiwisolver-1.4.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:841293b17ad704d70c578f1f0013c890e219952169ce8a24ebc063eecf775454"},
1604
+ {file = "kiwisolver-1.4.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f4f270de01dd3e129a72efad823da90cc4d6aafb64c410c9033aba70db9f1ff0"},
1605
+ {file = "kiwisolver-1.4.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f9f39e2f049db33a908319cf46624a569b36983c7c78318e9726a4cb8923b26c"},
1606
+ {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c97528e64cb9ebeff9701e7938653a9951922f2a38bd847787d4a8e498cc83ae"},
1607
+ {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d1573129aa0fd901076e2bfb4275a35f5b7aa60fbfb984499d661ec950320b0"},
1608
+ {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ad881edc7ccb9d65b0224f4e4d05a1e85cf62d73aab798943df6d48ab0cd79a1"},
1609
+ {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b428ef021242344340460fa4c9185d0b1f66fbdbfecc6c63eff4b7c29fad429d"},
1610
+ {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:2e407cb4bd5a13984a6c2c0fe1845e4e41e96f183e5e5cd4d77a857d9693494c"},
1611
+ {file = "kiwisolver-1.4.4-cp38-cp38-win32.whl", hash = "sha256:75facbe9606748f43428fc91a43edb46c7ff68889b91fa31f53b58894503a191"},
1612
+ {file = "kiwisolver-1.4.4-cp38-cp38-win_amd64.whl", hash = "sha256:5bce61af018b0cb2055e0e72e7d65290d822d3feee430b7b8203d8a855e78766"},
1613
+ {file = "kiwisolver-1.4.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8c808594c88a025d4e322d5bb549282c93c8e1ba71b790f539567932722d7bd8"},
1614
+ {file = "kiwisolver-1.4.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f0a71d85ecdd570ded8ac3d1c0f480842f49a40beb423bb8014539a9f32a5897"},
1615
+ {file = "kiwisolver-1.4.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b533558eae785e33e8c148a8d9921692a9fe5aa516efbdff8606e7d87b9d5824"},
1616
+ {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:efda5fc8cc1c61e4f639b8067d118e742b812c930f708e6667a5ce0d13499e29"},
1617
+ {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7c43e1e1206cd421cd92e6b3280d4385d41d7166b3ed577ac20444b6995a445f"},
1618
+ {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc8d3bd6c72b2dd9decf16ce70e20abcb3274ba01b4e1c96031e0c4067d1e7cd"},
1619
+ {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4ea39b0ccc4f5d803e3337dd46bcce60b702be4d86fd0b3d7531ef10fd99a1ac"},
1620
+ {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:968f44fdbf6dd757d12920d63b566eeb4d5b395fd2d00d29d7ef00a00582aac9"},
1621
+ {file = "kiwisolver-1.4.4-cp39-cp39-win32.whl", hash = "sha256:da7e547706e69e45d95e116e6939488d62174e033b763ab1496b4c29b76fabea"},
1622
+ {file = "kiwisolver-1.4.4-cp39-cp39-win_amd64.whl", hash = "sha256:ba59c92039ec0a66103b1d5fe588fa546373587a7d68f5c96f743c3396afc04b"},
1623
+ {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:91672bacaa030f92fc2f43b620d7b337fd9a5af28b0d6ed3f77afc43c4a64b5a"},
1624
+ {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:787518a6789009c159453da4d6b683f468ef7a65bbde796bcea803ccf191058d"},
1625
+ {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da152d8cdcab0e56e4f45eb08b9aea6455845ec83172092f09b0e077ece2cf7a"},
1626
+ {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ecb1fa0db7bf4cff9dac752abb19505a233c7f16684c5826d1f11ebd9472b871"},
1627
+ {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:28bc5b299f48150b5f822ce68624e445040595a4ac3d59251703779836eceff9"},
1628
+ {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:81e38381b782cc7e1e46c4e14cd997ee6040768101aefc8fa3c24a4cc58e98f8"},
1629
+ {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2a66fdfb34e05b705620dd567f5a03f239a088d5a3f321e7b6ac3239d22aa286"},
1630
+ {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:872b8ca05c40d309ed13eb2e582cab0c5a05e81e987ab9c521bf05ad1d5cf5cb"},
1631
+ {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:70e7c2e7b750585569564e2e5ca9845acfaa5da56ac46df68414f29fea97be9f"},
1632
+ {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9f85003f5dfa867e86d53fac6f7e6f30c045673fa27b603c397753bebadc3008"},
1633
+ {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2e307eb9bd99801f82789b44bb45e9f541961831c7311521b13a6c85afc09767"},
1634
+ {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1792d939ec70abe76f5054d3f36ed5656021dcad1322d1cc996d4e54165cef9"},
1635
+ {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6cb459eea32a4e2cf18ba5fcece2dbdf496384413bc1bae15583f19e567f3b2"},
1636
+ {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:36dafec3d6d6088d34e2de6b85f9d8e2324eb734162fba59d2ba9ed7a2043d5b"},
1637
+ {file = "kiwisolver-1.4.4.tar.gz", hash = "sha256:d41997519fcba4a1e46eb4a2fe31bc12f0ff957b2b81bac28db24744f333e955"},
1638
+ ]
1639
+
1640
  [[package]]
1641
  name = "lxml"
1642
  version = "4.9.2"
 
1812
  {file = "MarkupSafe-2.1.2.tar.gz", hash = "sha256:abcabc8c2b26036d62d4c746381a6f7cf60aafcc653198ad678306986b09450d"},
1813
  ]
1814
 
1815
+ [[package]]
1816
+ name = "matplotlib"
1817
+ version = "3.7.1"
1818
+ description = "Python plotting package"
1819
+ optional = false
1820
+ python-versions = ">=3.8"
1821
+ files = [
1822
+ {file = "matplotlib-3.7.1-cp310-cp310-macosx_10_12_universal2.whl", hash = "sha256:95cbc13c1fc6844ab8812a525bbc237fa1470863ff3dace7352e910519e194b1"},
1823
+ {file = "matplotlib-3.7.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:08308bae9e91aca1ec6fd6dda66237eef9f6294ddb17f0d0b3c863169bf82353"},
1824
+ {file = "matplotlib-3.7.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:544764ba51900da4639c0f983b323d288f94f65f4024dc40ecb1542d74dc0500"},
1825
+ {file = "matplotlib-3.7.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56d94989191de3fcc4e002f93f7f1be5da476385dde410ddafbb70686acf00ea"},
1826
+ {file = "matplotlib-3.7.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e99bc9e65901bb9a7ce5e7bb24af03675cbd7c70b30ac670aa263240635999a4"},
1827
+ {file = "matplotlib-3.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb7d248c34a341cd4c31a06fd34d64306624c8cd8d0def7abb08792a5abfd556"},
1828
+ {file = "matplotlib-3.7.1-cp310-cp310-win32.whl", hash = "sha256:ce463ce590f3825b52e9fe5c19a3c6a69fd7675a39d589e8b5fbe772272b3a24"},
1829
+ {file = "matplotlib-3.7.1-cp310-cp310-win_amd64.whl", hash = "sha256:3d7bc90727351fb841e4d8ae620d2d86d8ed92b50473cd2b42ce9186104ecbba"},
1830
+ {file = "matplotlib-3.7.1-cp311-cp311-macosx_10_12_universal2.whl", hash = "sha256:770a205966d641627fd5cf9d3cb4b6280a716522cd36b8b284a8eb1581310f61"},
1831
+ {file = "matplotlib-3.7.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:f67bfdb83a8232cb7a92b869f9355d677bce24485c460b19d01970b64b2ed476"},
1832
+ {file = "matplotlib-3.7.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2bf092f9210e105f414a043b92af583c98f50050559616930d884387d0772aba"},
1833
+ {file = "matplotlib-3.7.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89768d84187f31717349c6bfadc0e0d8c321e8eb34522acec8a67b1236a66332"},
1834
+ {file = "matplotlib-3.7.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:83111e6388dec67822e2534e13b243cc644c7494a4bb60584edbff91585a83c6"},
1835
+ {file = "matplotlib-3.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a867bf73a7eb808ef2afbca03bcdb785dae09595fbe550e1bab0cd023eba3de0"},
1836
+ {file = "matplotlib-3.7.1-cp311-cp311-win32.whl", hash = "sha256:fbdeeb58c0cf0595efe89c05c224e0a502d1aa6a8696e68a73c3efc6bc354304"},
1837
+ {file = "matplotlib-3.7.1-cp311-cp311-win_amd64.whl", hash = "sha256:c0bd19c72ae53e6ab979f0ac6a3fafceb02d2ecafa023c5cca47acd934d10be7"},
1838
+ {file = "matplotlib-3.7.1-cp38-cp38-macosx_10_12_universal2.whl", hash = "sha256:6eb88d87cb2c49af00d3bbc33a003f89fd9f78d318848da029383bfc08ecfbfb"},
1839
+ {file = "matplotlib-3.7.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:cf0e4f727534b7b1457898c4f4ae838af1ef87c359b76dcd5330fa31893a3ac7"},
1840
+ {file = "matplotlib-3.7.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:46a561d23b91f30bccfd25429c3c706afe7d73a5cc64ef2dfaf2b2ac47c1a5dc"},
1841
+ {file = "matplotlib-3.7.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8704726d33e9aa8a6d5215044b8d00804561971163563e6e6591f9dcf64340cc"},
1842
+ {file = "matplotlib-3.7.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4cf327e98ecf08fcbb82685acaf1939d3338548620ab8dfa02828706402c34de"},
1843
+ {file = "matplotlib-3.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:617f14ae9d53292ece33f45cba8503494ee199a75b44de7717964f70637a36aa"},
1844
+ {file = "matplotlib-3.7.1-cp38-cp38-win32.whl", hash = "sha256:7c9a4b2da6fac77bcc41b1ea95fadb314e92508bf5493ceff058e727e7ecf5b0"},
1845
+ {file = "matplotlib-3.7.1-cp38-cp38-win_amd64.whl", hash = "sha256:14645aad967684e92fc349493fa10c08a6da514b3d03a5931a1bac26e6792bd1"},
1846
+ {file = "matplotlib-3.7.1-cp39-cp39-macosx_10_12_universal2.whl", hash = "sha256:81a6b377ea444336538638d31fdb39af6be1a043ca5e343fe18d0f17e098770b"},
1847
+ {file = "matplotlib-3.7.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:28506a03bd7f3fe59cd3cd4ceb2a8d8a2b1db41afede01f66c42561b9be7b4b7"},
1848
+ {file = "matplotlib-3.7.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8c587963b85ce41e0a8af53b9b2de8dddbf5ece4c34553f7bd9d066148dc719c"},
1849
+ {file = "matplotlib-3.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8bf26ade3ff0f27668989d98c8435ce9327d24cffb7f07d24ef609e33d582439"},
1850
+ {file = "matplotlib-3.7.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:def58098f96a05f90af7e92fd127d21a287068202aa43b2a93476170ebd99e87"},
1851
+ {file = "matplotlib-3.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f883a22a56a84dba3b588696a2b8a1ab0d2c3d41be53264115c71b0a942d8fdb"},
1852
+ {file = "matplotlib-3.7.1-cp39-cp39-win32.whl", hash = "sha256:4f99e1b234c30c1e9714610eb0c6d2f11809c9c78c984a613ae539ea2ad2eb4b"},
1853
+ {file = "matplotlib-3.7.1-cp39-cp39-win_amd64.whl", hash = "sha256:3ba2af245e36990facf67fde840a760128ddd71210b2ab6406e640188d69d136"},
1854
+ {file = "matplotlib-3.7.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3032884084f541163f295db8a6536e0abb0db464008fadca6c98aaf84ccf4717"},
1855
+ {file = "matplotlib-3.7.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a2cb34336110e0ed8bb4f650e817eed61fa064acbefeb3591f1b33e3a84fd96"},
1856
+ {file = "matplotlib-3.7.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b867e2f952ed592237a1828f027d332d8ee219ad722345b79a001f49df0936eb"},
1857
+ {file = "matplotlib-3.7.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:57bfb8c8ea253be947ccb2bc2d1bb3862c2bccc662ad1b4626e1f5e004557042"},
1858
+ {file = "matplotlib-3.7.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:438196cdf5dc8d39b50a45cb6e3f6274edbcf2254f85fa9b895bf85851c3a613"},
1859
+ {file = "matplotlib-3.7.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:21e9cff1a58d42e74d01153360de92b326708fb205250150018a52c70f43c290"},
1860
+ {file = "matplotlib-3.7.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75d4725d70b7c03e082bbb8a34639ede17f333d7247f56caceb3801cb6ff703d"},
1861
+ {file = "matplotlib-3.7.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:97cc368a7268141afb5690760921765ed34867ffb9655dd325ed207af85c7529"},
1862
+ {file = "matplotlib-3.7.1.tar.gz", hash = "sha256:7b73305f25eab4541bd7ee0b96d87e53ae9c9f1823be5659b806cd85786fe882"},
1863
+ ]
1864
+
1865
+ [package.dependencies]
1866
+ contourpy = ">=1.0.1"
1867
+ cycler = ">=0.10"
1868
+ fonttools = ">=4.22.0"
1869
+ importlib-resources = {version = ">=3.2.0", markers = "python_version < \"3.10\""}
1870
+ kiwisolver = ">=1.0.1"
1871
+ numpy = ">=1.20"
1872
+ packaging = ">=20.0"
1873
+ pillow = ">=6.2.0"
1874
+ pyparsing = ">=2.3.1"
1875
+ python-dateutil = ">=2.7"
1876
+
1877
  [[package]]
1878
  name = "matplotlib-inline"
1879
  version = "0.1.6"
 
2682
  {file = "Pympler-1.0.1.tar.gz", hash = "sha256:993f1a3599ca3f4fcd7160c7545ad06310c9e12f70174ae7ae8d4e25f6c5d3fa"},
2683
  ]
2684
 
2685
+ [[package]]
2686
+ name = "pyparsing"
2687
+ version = "3.0.9"
2688
+ description = "pyparsing module - Classes and methods to define and execute parsing grammars"
2689
+ optional = false
2690
+ python-versions = ">=3.6.8"
2691
+ files = [
2692
+ {file = "pyparsing-3.0.9-py3-none-any.whl", hash = "sha256:5026bae9a10eeaefb61dab2f09052b9f4307d44aee4eda64b309723d8d206bbc"},
2693
+ {file = "pyparsing-3.0.9.tar.gz", hash = "sha256:2b020ecf7d21b687f219b71ecad3631f644a47f01403fa1d1036b0c6416d70fb"},
2694
+ ]
2695
+
2696
+ [package.extras]
2697
+ diagrams = ["jinja2", "railroad-diagrams"]
2698
+
2699
  [[package]]
2700
  name = "pyrsistent"
2701
  version = "0.19.3"
 
3915
  [metadata]
3916
  lock-version = "2.0"
3917
  python-versions = ">=3.9,<3.9.7 || >3.9.7,<4.0"
3918
+ content-hash = "5ac5752c981365446d25ad8e5aa465c9483cfc3f5ad749734d4f1d1101027425"
pyproject.toml CHANGED
@@ -24,6 +24,7 @@ yt-dlp = "^2023.3.4"
24
  tqdm = "^4.65.0"
25
  opencv-python = "^4.7.0.72"
26
  youtube-dl = "^2021.12.17"
 
27
 
28
  [tool.poetry.group.dev.dependencies]
29
  notebook = "^6.5.4"
 
24
  tqdm = "^4.65.0"
25
  opencv-python = "^4.7.0.72"
26
  youtube-dl = "^2021.12.17"
27
+ matplotlib = "^3.7.1"
28
 
29
  [tool.poetry.group.dev.dependencies]
30
  notebook = "^6.5.4"