sradc
log hash of ip with hash of query so can track number of users and number of queries anonymously
a2309ed
raw
history blame
4.89 kB
import base64
import hashlib
import os
import subprocess
from dataclasses import dataclass
from typing import Optional
import faiss
import numpy as np
import pandas as pd
import streamlit as st
from streamlit import runtime
from streamlit.logger import get_logger
from streamlit.runtime.scriptrunner import get_script_run_ctx
from pipeline import clip_wrapper
from pipeline.process_videos import DATAFRAME_PATH
NUM_FRAMES_TO_RETURN = 21
logger = get_logger(__name__)
class SemanticSearcher:
def __init__(self, dataset: pd.DataFrame):
dim_columns = dataset.filter(regex="^dim_").columns
self.embedder = clip_wrapper.ClipWrapper().texts2vec
self.metadata = dataset.drop(columns=dim_columns)
self.index = faiss.IndexFlatIP(len(dim_columns))
self.index.add(np.ascontiguousarray(dataset[dim_columns].to_numpy(np.float32)))
def search(self, query: str) -> list["SearchResult"]:
v = self.embedder([query]).detach().numpy()
D, I = self.index.search(v, NUM_FRAMES_TO_RETURN)
return [
SearchResult(
video_id=row["video_id"],
frame_idx=row["frame_idx"],
timestamp=row["timestamp"],
base64_image=row["base64_image"],
score=score,
)
for score, (_, row) in zip(D[0], self.metadata.iloc[I[0]].iterrows())
]
@st.cache_resource
def get_semantic_searcher():
return SemanticSearcher(pd.read_parquet(DATAFRAME_PATH))
@st.cache_data
def get_git_hash() -> Optional[str]:
try:
return subprocess.check_output(["git", "rev-parse", "HEAD"]).decode().strip()
except subprocess.CalledProcessError:
return None
@dataclass
class SearchResult:
video_id: str
frame_idx: int
timestamp: float
base64_image: str
score: float
def get_video_url(video_id: str, timestamp: float) -> str:
return f"https://www.youtube.com/watch?v={video_id}&t={int(timestamp)}"
def display_search_results(results: list[SearchResult]) -> None:
col_count = 3 # Number of videos per row
col_num = 0 # Counter to keep track of the current column
row = st.empty() # Placeholder for the current row
for i, result in enumerate(results):
if col_num == 0:
row = st.columns(col_count) # Create a new row of columns
with row[col_num]:
# Apply CSS styling to the video container
st.markdown(
"""
<style>
.video-container {
position: relative;
padding-bottom: 56.25%;
padding-top: 30px;
height: 0;
overflow: hidden;
}
.video-container iframe,
.video-container object,
.video-container embed {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}
</style>
""",
unsafe_allow_html=True,
)
st.markdown(
f"""
<a href="{get_video_url(result.video_id, result.timestamp)}">
<img src="data:image/jpeg;base64,{result.base64_image.decode()}" alt="frame {result.frame_idx} timestamp {int(result.timestamp)}" width="100%">
</a>
""",
unsafe_allow_html=True,
)
col_num += 1
if col_num >= col_count:
col_num = 0
def get_remote_ip() -> str:
"""Get remote ip."""
try:
ctx = get_script_run_ctx()
if ctx is None:
return None
session_info = runtime.get_instance().get_client(ctx.session_id)
if session_info is None:
return None
except Exception as e:
return None
return session_info.request.remote_ip
def main():
st.set_page_config(page_title="video-semantic-search", layout="wide")
st.header("Visual content search over music videos")
st.markdown("_App by Ben Tenmann and Sidney Radcliffe_")
searcher = get_semantic_searcher()
num_videos = len(searcher.metadata.video_id.unique())
st.text_input(
f"What are you looking for? Search over {num_videos} music videos.", key="query"
)
query = st.session_state["query"]
if query:
query_sha256 = hashlib.sha256(query.encode()).hexdigest()[:10]
ip_sha256 = hashlib.sha256(get_remote_ip().encode()).hexdigest()[:10]
logger.info(f"sha256(ip)={ip_sha256} sha256(query)={query_sha256}")
st.text("Click image to open video")
display_search_results(searcher.search(query))
if get_git_hash():
st.text(f"Build: {get_git_hash()[0:7]}")
if __name__ == "__main__":
main()