Spaces:
Sleeping
Sleeping
spedrox-sac
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
from langchain_core.output_parsers import StrOutputParser
|
4 |
+
import os
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import pandas as pd
|
7 |
+
import sqlite3
|
8 |
+
import re
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
12 |
+
api = InferenceClient(token=token)
|
13 |
+
parser = StrOutputParser()
|
14 |
+
|
15 |
+
# Streamlit app
|
16 |
+
st.title("AiSQL: AI-Powered SQL Query Generator")
|
17 |
+
|
18 |
+
# File uploader for CSV
|
19 |
+
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
20 |
+
|
21 |
+
if uploaded_file:
|
22 |
+
# Read CSV into DataFrame
|
23 |
+
df = pd.read_csv(uploaded_file)
|
24 |
+
st.write("Uploaded Data:")
|
25 |
+
st.dataframe(df)
|
26 |
+
|
27 |
+
# Normalize column names: replace spaces and special characters with underscores
|
28 |
+
df.columns = [re.sub(r'\W+', '_', col.strip()) for col in df.columns]
|
29 |
+
|
30 |
+
st.write("Normalized Columns in the CSV:")
|
31 |
+
st.write(df.columns.tolist())
|
32 |
+
|
33 |
+
# Create SQLite in-memory database
|
34 |
+
conn = sqlite3.connect(':memory:')
|
35 |
+
df.to_sql('data', conn, index=False, if_exists='replace')
|
36 |
+
|
37 |
+
# Natural language query input
|
38 |
+
nl_query = st.text_area("Enter your query in natural language or in code:")
|
39 |
+
|
40 |
+
if st.button("Run Query/Code"):
|
41 |
+
try:
|
42 |
+
# Generate SQL query using LLM
|
43 |
+
system_message = (
|
44 |
+
"You are an AI assistant that converts natural language queries into SQL queries based on the following table schema.\n"
|
45 |
+
f"Table name: data\n"
|
46 |
+
f"Columns: {', '.join(df.columns.tolist())}\n"
|
47 |
+
"Provide only the SQL query suggestion in code blocks without any explanations, comments, or other text."
|
48 |
+
)
|
49 |
+
messages = [
|
50 |
+
{"role": "system", "content": system_message},
|
51 |
+
{"role": "user", "content": nl_query}
|
52 |
+
]
|
53 |
+
llm = api.chat.completions.create(
|
54 |
+
model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
55 |
+
max_tokens=150,
|
56 |
+
messages=messages
|
57 |
+
)
|
58 |
+
raw_response = llm.choices[0].message['content'].strip()
|
59 |
+
|
60 |
+
# Remove code blocks if present
|
61 |
+
sql_query = re.sub(r'```sql\n?|\n?```', '', raw_response).strip()
|
62 |
+
|
63 |
+
# Additional cleaning: Extract the first SQL statement
|
64 |
+
match = re.search(r'\b(SELECT|INSERT|UPDATE|DELETE|CREATE|DROP|ALTER)\b[\s\S]*?;', sql_query, re.IGNORECASE)
|
65 |
+
if match:
|
66 |
+
sql_query = match.group(0)
|
67 |
+
else:
|
68 |
+
st.error("Failed to extract a valid SQL query from the response.")
|
69 |
+
st.write("**Raw LLM Response:**")
|
70 |
+
st.write(raw_response)
|
71 |
+
st.stop()
|
72 |
+
|
73 |
+
# Validate that the SQL query starts with a valid keyword
|
74 |
+
valid_sql_keywords = ['SELECT', 'INSERT', 'UPDATE', 'DELETE', 'CREATE', 'DROP', 'ALTER']
|
75 |
+
if not any(sql_query.upper().startswith(keyword) for keyword in valid_sql_keywords):
|
76 |
+
st.error("The generated SQL query does not start with a valid SQL command.")
|
77 |
+
st.write("**Extracted SQL Query:**")
|
78 |
+
st.write(sql_query)
|
79 |
+
st.stop()
|
80 |
+
|
81 |
+
st.markdown(f"**Generated SQL Query:** `{sql_query}`")
|
82 |
+
|
83 |
+
# Execute SQL query
|
84 |
+
result = pd.read_sql_query(sql_query, conn)
|
85 |
+
st.write("Query Results:")
|
86 |
+
st.dataframe(result)
|
87 |
+
except Exception as e:
|
88 |
+
st.error(f"Error: {e}")
|
89 |
+
|
90 |
+
# Generate query suggestions using LLM
|
91 |
+
if st.button("Show Query Suggestions"):
|
92 |
+
try:
|
93 |
+
system_message = (
|
94 |
+
"You are an AI assistant that provides SQL query suggestions based on the following table schema.\n"
|
95 |
+
f"Table name: data\n"
|
96 |
+
f"Columns: {', '.join(df.columns.tolist())}\n"
|
97 |
+
"Provide exactly 5 example SQL queries separated by semicolons without any explanations, comments, or code blocks."
|
98 |
+
)
|
99 |
+
suggestion_messages = [
|
100 |
+
{"role": "system", "content": system_message},
|
101 |
+
{"role": "user", "content": "Provide SQL query suggestions."}
|
102 |
+
]
|
103 |
+
suggestions_llm = api.chat.completions.create(
|
104 |
+
model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
105 |
+
max_tokens=300,
|
106 |
+
messages=suggestion_messages
|
107 |
+
)
|
108 |
+
raw_suggestions = suggestions_llm.choices[0].message['content']
|
109 |
+
# Remove code blocks if present
|
110 |
+
suggestions = re.sub(r'```sql\n?|\n?```', '', raw_suggestions).strip()
|
111 |
+
|
112 |
+
# Split multiple queries separated by semicolons
|
113 |
+
suggestions_list = [query.strip() for query in suggestions.split(';') if query.strip()]
|
114 |
+
|
115 |
+
# Validate each suggestion starts with a valid SQL keyword
|
116 |
+
valid_sql_keywords = ['SELECT', 'INSERT', 'UPDATE', 'DELETE', 'CREATE', 'DROP', 'ALTER']
|
117 |
+
valid_suggestions = []
|
118 |
+
for query in suggestions_list:
|
119 |
+
if any(query.upper().startswith(keyword) for keyword in valid_sql_keywords):
|
120 |
+
valid_suggestions.append(query + ';')
|
121 |
+
|
122 |
+
st.session_state['valid_suggestions'] = valid_suggestions
|
123 |
+
|
124 |
+
if valid_suggestions:
|
125 |
+
formatted_suggestions = ';\n'.join(valid_suggestions)
|
126 |
+
st.write("**Query Suggestions:**")
|
127 |
+
st.code(formatted_suggestions, language='sql')
|
128 |
+
|
129 |
+
# Optionally, allow users to select a suggestion to execute
|
130 |
+
if 'valid_suggestions' in st.session_state:
|
131 |
+
selected_query = st.selectbox("Select a query to execute:", st.session_state['valid_suggestions'])
|
132 |
+
if st.button("Execute Selected Query"):
|
133 |
+
# Execute the selected query
|
134 |
+
try:
|
135 |
+
st.write(f"**Executing SQL Query:** `{selected_query}`")
|
136 |
+
result = pd.read_sql_query(selected_query, conn)
|
137 |
+
st.write("Query Results:")
|
138 |
+
st.dataframe(result)
|
139 |
+
except Exception as e:
|
140 |
+
st.error(f"Error executing selected query: {e}")
|
141 |
+
else:
|
142 |
+
st.error("No valid SQL query suggestions were generated.")
|
143 |
+
st.write("**Raw Suggestions Response:**")
|
144 |
+
st.write(suggestions)
|
145 |
+
except Exception as e:
|
146 |
+
st.error(f"Error generating suggestions: {e}")
|