edbeeching commited on
Commit
f90ad24
·
1 Parent(s): a7919f0

refactoring leaderboard

Browse files
Files changed (2) hide show
  1. app.py +19 -29
  2. utils.py +119 -0
app.py CHANGED
@@ -8,6 +8,7 @@ import json
8
  from apscheduler.schedulers.background import BackgroundScheduler
9
  import pandas as pd
10
  import datetime
 
11
 
12
  # clone / pull the lmeh eval data
13
  H4_TOKEN = os.environ.get("H4_TOKEN", None)
@@ -29,21 +30,9 @@ if H4_TOKEN:
29
 
30
  # parse the results
31
  BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
32
- BENCH_TO_NAME = {
33
- "arc_challenge":"ARC (25-shot) ⬆️",
34
- "hellaswag":"HellaSwag (10-shot) ⬆️",
35
- "hendrycks":"MMLU (5-shot) ⬆️",
36
- "truthfulqa_mc":"TruthQA (0-shot) ⬆️",
37
- }
38
- METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
39
-
40
 
41
- def make_clickable_model(model_name):
42
- # remove user from model name
43
- #model_name_show = ' '.join(model_name.split('/')[1:])
44
 
45
- link = "https://huggingface.co/" + model_name
46
- return f'<a target="_blank" href="{link}" style="color: blue; text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
47
 
48
  def load_results(model, benchmark, metric):
49
  file_path = os.path.join("evals", model, f"{model}-eval_{benchmark}.json")
@@ -82,28 +71,29 @@ def get_leaderboard():
82
  if repo:
83
  print("pulling changes")
84
  repo.git_pull()
85
- entries = [entry for entry in os.listdir("evals") if not (entry.startswith('.') or entry=="eval_requests" or entry=="evals")]
86
- model_directories = [entry for entry in entries if os.path.isdir(os.path.join("evals", entry))]
87
- all_data = []
88
- for model in model_directories:
89
- model_data = {"base_model": None, "eval_name": model}
90
 
91
- for benchmark, metric in zip(BENCHMARKS, METRICS):
92
- value, base_model = load_results(model, benchmark, metric)
93
- model_data[BENCH_TO_NAME[benchmark]] = round(value,3)
94
- if base_model is not None: # in case the last benchmark failed
95
- model_data["base_model"] = base_model
96
 
97
- model_data["total ⬆️"] = round(sum(model_data[benchmark] for benchmark in BENCH_TO_NAME.values()),3)
98
 
99
- if model_data["base_model"] is not None:
100
- model_data["base_model"] = make_clickable_model(model_data["base_model"])
101
 
102
- model_data["# params"] = get_n_params(model_data["base_model"])
103
 
104
- if model_data["base_model"] is not None:
105
- all_data.append(model_data)
106
 
 
107
  dataframe = pd.DataFrame.from_records(all_data)
108
  dataframe = dataframe.sort_values(by=['total ⬆️'], ascending=False)
109
 
 
8
  from apscheduler.schedulers.background import BackgroundScheduler
9
  import pandas as pd
10
  import datetime
11
+ from utils import get_eval_results_dicts, make_clickable_model
12
 
13
  # clone / pull the lmeh eval data
14
  H4_TOKEN = os.environ.get("H4_TOKEN", None)
 
30
 
31
  # parse the results
32
  BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
 
 
 
 
 
 
 
 
33
 
34
+ METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
 
 
35
 
 
 
36
 
37
  def load_results(model, benchmark, metric):
38
  file_path = os.path.join("evals", model, f"{model}-eval_{benchmark}.json")
 
71
  if repo:
72
  print("pulling changes")
73
  repo.git_pull()
74
+ # entries = [entry for entry in os.listdir("evals") if not (entry.startswith('.') or entry=="eval_requests" or entry=="evals")]
75
+ # model_directories = [entry for entry in entries if os.path.isdir(os.path.join("evals", entry))]
76
+ # all_data = []
77
+ # for model in model_directories:
78
+ # model_data = {"base_model": None, "eval_name": model}
79
 
80
+ # for benchmark, metric in zip(BENCHMARKS, METRICS):
81
+ # value, base_model = load_results(model, benchmark, metric)
82
+ # model_data[BENCH_TO_NAME[benchmark]] = round(value,3)
83
+ # if base_model is not None: # in case the last benchmark failed
84
+ # model_data["base_model"] = base_model
85
 
86
+ # model_data["total ⬆️"] = round(sum(model_data[benchmark] for benchmark in BENCH_TO_NAME.values()),3)
87
 
88
+ # if model_data["base_model"] is not None:
89
+ # model_data["base_model"] = make_clickable_model(model_data["base_model"])
90
 
91
+ # model_data["# params"] = get_n_params(model_data["base_model"])
92
 
93
+ # if model_data["base_model"] is not None:
94
+ # all_data.append(model_data)
95
 
96
+ all_data = get_eval_results_dicts()
97
  dataframe = pd.DataFrame.from_records(all_data)
98
  dataframe = dataframe.sort_values(by=['total ⬆️'], ascending=False)
99
 
utils.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import numpy as np
4
+ import gradio as gr
5
+ from huggingface_hub import Repository, HfApi
6
+ from transformers import AutoConfig
7
+ import json
8
+ from apscheduler.schedulers.background import BackgroundScheduler
9
+ import pandas as pd
10
+ import datetime
11
+ import glob
12
+ from dataclasses import dataclass
13
+ from typing import List, Tuple, Dict
14
+ # clone / pull the lmeh eval data
15
+ H4_TOKEN = os.environ.get("H4_TOKEN", None)
16
+ LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
17
+
18
+ # repo=None
19
+ # if H4_TOKEN:
20
+ # print("pulling repo")
21
+ # # try:
22
+ # # shutil.rmtree("./evals/")
23
+ # # except:
24
+ # # pass
25
+
26
+ # repo = Repository(
27
+ # local_dir="./evals/", clone_from=LMEH_REPO, use_auth_token=H4_TOKEN, repo_type="dataset"
28
+ # )
29
+ # repo.git_pull()
30
+ METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
31
+ BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
32
+ BENCH_TO_NAME = {
33
+ "arc_challenge":"ARC (25-shot) ⬆️",
34
+ "hellaswag":"HellaSwag (10-shot) ⬆️",
35
+ "hendrycks":"MMLU (5-shot) ⬆️",
36
+ "truthfulqa_mc":"TruthQA (0-shot) ⬆️",
37
+ }
38
+ def make_clickable_model(model_name):
39
+ # remove user from model name
40
+ #model_name_show = ' '.join(model_name.split('/')[1:])
41
+
42
+ link = "https://huggingface.co/" + model_name
43
+ return f'<a target="_blank" href="{link}" style="color: blue; text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
44
+
45
+ @dataclass
46
+ class EvalResult:
47
+ org : str
48
+ model : str
49
+ is_8bit : bool
50
+ results : dict
51
+
52
+ def to_dict(self):
53
+ data_dict = {}
54
+ data_dict["base_model"] = make_clickable_model(f"{self.org}/{self.model}")
55
+ data_dict["total ⬆️"] = sum([v for k,v in self.results.items()])
56
+ data_dict["# params"] = "unknown (todo)"
57
+
58
+ for benchmark in BENCHMARKS:
59
+ if not benchmark in self.results.keys():
60
+ self.results[benchmark] = None
61
+
62
+ for k,v in BENCH_TO_NAME.items():
63
+ data_dict[v] = self.results[k]
64
+
65
+ return data_dict
66
+
67
+
68
+
69
+
70
+ def parse_eval_result(json_filepath: str) -> Tuple[str, dict]:
71
+ with open(json_filepath) as fp:
72
+ data = json.load(fp)
73
+
74
+ path_split = json_filepath.split("/")
75
+ org = None
76
+ model = path_split[-3]
77
+ is_8bit = path_split[-2] == "8bit"
78
+ if len(path_split)== 5:
79
+ # handles gpt2 type models that don't have an org
80
+ result_key = f"{path_split[-3]}_{path_split[-2]}"
81
+ else:
82
+ result_key = f"{path_split[-4]}_{path_split[-3]}_{path_split[-2]}"
83
+ org = path_split[-4]
84
+
85
+ eval_result = None
86
+ for benchmark, metric in zip(BENCHMARKS, METRICS):
87
+ if benchmark in json_filepath:
88
+ accs = np.array([v[metric] for k, v in data["results"].items()])
89
+ mean_acc = np.mean(accs)
90
+ eval_result = EvalResult(org, model, is_8bit, {benchmark:mean_acc})
91
+
92
+ return result_key, eval_result
93
+
94
+
95
+
96
+
97
+ def get_eval_results() -> List[EvalResult]:
98
+ json_filepaths = glob.glob("evals/eval_results/**/*.json", recursive=True)
99
+ eval_results = {}
100
+
101
+ for json_filepath in json_filepaths:
102
+ result_key, eval_result = parse_eval_result(json_filepath)
103
+ if result_key in eval_results.keys():
104
+ eval_results[result_key].results.update(eval_result.results)
105
+ else:
106
+ eval_results[result_key] = eval_result
107
+
108
+
109
+ eval_results = [v for k,v in eval_results.items()]
110
+
111
+ return eval_results
112
+
113
+ def get_eval_results_dicts() -> List[Dict]:
114
+ eval_results = get_eval_results()
115
+
116
+ return [e.to_dict() for e in eval_results]
117
+
118
+ eval_results_dict = get_eval_results_dicts()
119
+ print(eval_results_dict)