edbeeching commited on
Commit
db6f218
·
1 Parent(s): 5cb1426

added public option

Browse files
Files changed (2) hide show
  1. app.py +54 -15
  2. utils.py +13 -24
app.py CHANGED
@@ -8,11 +8,12 @@ import json
8
  from apscheduler.schedulers.background import BackgroundScheduler
9
  import pandas as pd
10
  import datetime
11
- from utils import get_eval_results_dicts, make_clickable_model, get_n_params
12
 
13
  # clone / pull the lmeh eval data
14
  H4_TOKEN = os.environ.get("H4_TOKEN", None)
15
  LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
 
16
 
17
  repo=None
18
  if H4_TOKEN:
@@ -46,8 +47,12 @@ def load_results(model, benchmark, metric):
46
  return mean_acc, data["config"]["model_args"]
47
 
48
 
49
- COLS = ["base_model", "revision", "8bit", "total ⬆️", "ARC (25-shot) ⬆️", "HellaSwag (10-shot) ⬆️", "MMLU (5-shot) ⬆️", "TruthQA (0-shot) ⬆️"]
50
- TYPES = ["markdown","str", "bool", "number", "number", "number", "number", "number", ]
 
 
 
 
51
 
52
  EVAL_COLS = ["model", "revision", "private", "8bit_eval", "is_delta_weight", "status"]
53
  EVAL_TYPES = ["markdown","str", "bool", "bool", "bool", "str"]
@@ -56,7 +61,31 @@ def get_leaderboard():
56
  print("pulling changes")
57
  repo.git_pull()
58
 
59
- all_data = get_eval_results_dicts()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  dataframe = pd.DataFrame.from_records(all_data)
61
  dataframe = dataframe.sort_values(by=['total ⬆️'], ascending=False)
62
  print(dataframe)
@@ -77,7 +106,7 @@ def get_eval_table():
77
  with open(file_path) as fp:
78
  data = json.load(fp)
79
 
80
- data["# params"] = get_n_params(data["model"])
81
  data["model"] = make_clickable_model(data["model"])
82
  data["revision"] = data.get("revision", "main")
83
 
@@ -171,8 +200,16 @@ block = gr.Blocks()
171
  with block:
172
  with gr.Row():
173
  gr.Markdown(f"""
174
- # 🤗 H4 Model Evaluation leaderboard using the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> LMEH benchmark suite </a>.
175
- Evaluation is performed against 4 popular benchmarks AI2 Reasoning Challenge, HellaSwag, MMLU, and TruthFul QC MC. To run your own benchmarks, refer to the README in the H4 repo.
 
 
 
 
 
 
 
 
176
  """)
177
 
178
  with gr.Row():
@@ -186,10 +223,10 @@ with block:
186
  # Evaluation Queue for the LMEH benchmarks, these models will be automatically evaluated on the 🤗 cluster
187
 
188
  """)
189
-
190
- with gr.Row():
191
- eval_table = gr.components.Dataframe(value=eval_queue, headers=EVAL_COLS,
192
- datatype=EVAL_TYPES, max_rows=5)
193
 
194
  with gr.Row():
195
  refresh_button = gr.Button("Refresh")
@@ -202,11 +239,12 @@ with block:
202
  with gr.Column():
203
  model_name_textbox = gr.Textbox(label="Model name")
204
  revision_name_textbox = gr.Textbox(label="revision", placeholder="main")
205
- base_model_name_textbox = gr.Textbox(label="base model (for delta)")
206
  with gr.Column():
207
- is_8bit_toggle = gr.Checkbox(False, label="8 bit eval")
208
- private = gr.Checkbox(False, label="Private")
209
  is_delta_weight = gr.Checkbox(False, label="Delta weights")
 
210
 
211
  with gr.Row():
212
  submit_button = gr.Button("Submit Eval")
@@ -220,7 +258,8 @@ with block:
220
  print("adding refresh leaderboard")
221
  def refresh_leaderboard():
222
  leaderboard_table = get_leaderboard()
223
- print("leaderboard updated")
 
224
 
225
  scheduler = BackgroundScheduler()
226
  scheduler.add_job(func=refresh_leaderboard, trigger="interval", seconds=300) # refresh every 5 mins
 
8
  from apscheduler.schedulers.background import BackgroundScheduler
9
  import pandas as pd
10
  import datetime
11
+ from utils import get_eval_results_dicts, make_clickable_model
12
 
13
  # clone / pull the lmeh eval data
14
  H4_TOKEN = os.environ.get("H4_TOKEN", None)
15
  LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
16
+ IS_PUBLIC = bool(True) # add secret here
17
 
18
  repo=None
19
  if H4_TOKEN:
 
47
  return mean_acc, data["config"]["model_args"]
48
 
49
 
50
+ COLS = ["base_model", "revision", "total ⬆️", "ARC (25-shot) ⬆️", "HellaSwag (10-shot) ⬆️", "MMLU (5-shot) ⬆️", "TruthQA (0-shot) ⬆️"]
51
+ TYPES = ["markdown","str", "number", "number", "number", "number", "number", ]
52
+
53
+ if not IS_PUBLIC:
54
+ COLS.insert(2, "8bit")
55
+ TYPES.insert(2, "bool")
56
 
57
  EVAL_COLS = ["model", "revision", "private", "8bit_eval", "is_delta_weight", "status"]
58
  EVAL_TYPES = ["markdown","str", "bool", "bool", "bool", "str"]
 
61
  print("pulling changes")
62
  repo.git_pull()
63
 
64
+ all_data = get_eval_results_dicts(IS_PUBLIC)
65
+
66
+ gpt4_values = {
67
+ "base_model":f'<a target="_blank" href=https://arxiv.org/abs/2303.08774 style="color: blue; text-decoration: underline;text-decoration-style: dotted;">gpt4</a>',
68
+ "revision":"tech report",
69
+ "8bit":None,
70
+ "total ⬆️":84.3,
71
+ "ARC (25-shot) ⬆️":96.3,
72
+ "HellaSwag (10-shot) ⬆️":95.3,
73
+ "MMLU (5-shot) ⬆️":86.4,
74
+ "TruthQA (0-shot) ⬆️":59.0,
75
+ }
76
+ all_data.append(gpt4_values)
77
+ gpt35_values = {
78
+ "base_model":f'<a target="_blank" href=https://arxiv.org/abs/2303.08774 style="color: blue; text-decoration: underline;text-decoration-style: dotted;">gpt3.5</a>',
79
+ "revision":"tech report",
80
+ "8bit":None,
81
+ "total ⬆️":71.9,
82
+ "ARC (25-shot) ⬆️":85.2,
83
+ "HellaSwag (10-shot) ⬆️":85.5,
84
+ "MMLU (5-shot) ⬆️":70.0,
85
+ "TruthQA (0-shot) ⬆️":47.0,
86
+ }
87
+ all_data.append(gpt35_values)
88
+
89
  dataframe = pd.DataFrame.from_records(all_data)
90
  dataframe = dataframe.sort_values(by=['total ⬆️'], ascending=False)
91
  print(dataframe)
 
106
  with open(file_path) as fp:
107
  data = json.load(fp)
108
 
109
+ data["# params"] = "unknown"
110
  data["model"] = make_clickable_model(data["model"])
111
  data["revision"] = data.get("revision", "main")
112
 
 
200
  with block:
201
  with gr.Row():
202
  gr.Markdown(f"""
203
+ # 🤗 Open Chatbot Leaderboard
204
+ <font size="4">With the plethora of chatbot LLMs being released week upon week, often with grandiose claims of their performance, it can be hard to filter out the genuine progress that is being made by the open-source community and which chatbot is the current state of the art. The 🤗 Open Chatbot Leaderboard aims to track, rank and evaluate chatbot models as they are released. We evaluate models of 4 key benchmarks from the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test generative language models on a large number of different evaluation tasks. A key advantage of this leaderboard is that anyone from the community can submit a model for automated evaluation on the 🤗 research cluster. As long as it is Transformers model with weights on the 🤗 hub. We also support delta-weights for non-commercial licensed models, such as llama.
205
+ <p>
206
+ Evaluation is performed against 4 popular benchmarks:
207
+ - <a href="https://arxiv.org/abs/1803.05457" target="_blank"> AI2 Reasoning Challenge </a> (25-shot) - a set of grade-school science questions.
208
+ - <a href="https://arxiv.org/abs/1905.07830" target="_blank"> HellaSwag </a> (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
209
+ - <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
210
+ - <a href="https://arxiv.org/abs/2109.07958" target="_blank"> Truthful QA MC </a> (0-shot) - a benchmark to measure whether a language model is truthful in generating answers to questions.
211
+ <p>
212
+ We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings. </font>
213
  """)
214
 
215
  with gr.Row():
 
223
  # Evaluation Queue for the LMEH benchmarks, these models will be automatically evaluated on the 🤗 cluster
224
 
225
  """)
226
+ with gr.Accordion("Evaluation Queue", open=False):
227
+ with gr.Row():
228
+ eval_table = gr.components.Dataframe(value=eval_queue, headers=EVAL_COLS,
229
+ datatype=EVAL_TYPES, max_rows=5)
230
 
231
  with gr.Row():
232
  refresh_button = gr.Button("Refresh")
 
239
  with gr.Column():
240
  model_name_textbox = gr.Textbox(label="Model name")
241
  revision_name_textbox = gr.Textbox(label="revision", placeholder="main")
242
+
243
  with gr.Column():
244
+ is_8bit_toggle = gr.Checkbox(False, label="8 bit eval", visible=not IS_PUBLIC)
245
+ private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
246
  is_delta_weight = gr.Checkbox(False, label="Delta weights")
247
+ base_model_name_textbox = gr.Textbox(label="base model (for delta)")
248
 
249
  with gr.Row():
250
  submit_button = gr.Button("Submit Eval")
 
258
  print("adding refresh leaderboard")
259
  def refresh_leaderboard():
260
  leaderboard_table = get_leaderboard()
261
+ eval_table = get_eval_table()
262
+ print("refreshing leaderboard")
263
 
264
  scheduler = BackgroundScheduler()
265
  scheduler.add_job(func=refresh_leaderboard, trigger="interval", seconds=300) # refresh every 5 mins
utils.py CHANGED
@@ -23,28 +23,13 @@ BENCH_TO_NAME = {
23
  "hendrycks":"MMLU (5-shot) ⬆️",
24
  "truthfulqa_mc":"TruthQA (0-shot) ⬆️",
25
  }
26
- def make_clickable_model(model_name):
27
  # remove user from model name
28
  #model_name_show = ' '.join(model_name.split('/')[1:])
29
 
30
  link = "https://huggingface.co/" + model_name
31
  return f'<a target="_blank" href="{link}" style="color: blue; text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
32
 
33
- def get_n_params(base_model):
34
- return "unknown"
35
-
36
- # WARNING: High memory usage
37
-
38
- # Retrieve the number of parameters from the configuration
39
- try:
40
- config = AutoConfig.from_pretrained(base_model, use_auth_token=True, low_cpu_mem_usage=True)
41
- n_params = AutoModel.from_config(config).num_parameters()
42
- except Exception as e:
43
- print(f"Error:{e} The number of parameters is not available in the config for the model '{base_model}'.")
44
- return "unknown"
45
-
46
- return str(n_params)
47
-
48
  @dataclass
49
  class EvalResult:
50
  eval_name : str
@@ -66,8 +51,8 @@ class EvalResult:
66
  data_dict["8bit"] = self.is_8bit
67
  data_dict["base_model"] = make_clickable_model(base_model)
68
  data_dict["revision"] = self.revision
69
- data_dict["total ⬆️"] = round(sum([v for k,v in self.results.items()]),3)
70
- data_dict["# params"] = get_n_params(base_model)
71
 
72
  for benchmark in BENCHMARKS:
73
  if not benchmark in self.results.keys():
@@ -90,7 +75,7 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, dict]:
90
  model = path_split[-4]
91
  is_8bit = path_split[-2] == "8bit"
92
  revision = path_split[-3]
93
- if len(path_split)== 6:
94
  # handles gpt2 type models that don't have an org
95
  result_key = f"{path_split[-4]}_{path_split[-3]}_{path_split[-2]}"
96
  else:
@@ -101,7 +86,7 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, dict]:
101
  for benchmark, metric in zip(BENCHMARKS, METRICS):
102
  if benchmark in json_filepath:
103
  accs = np.array([v[metric] for k, v in data["results"].items()])
104
- mean_acc = round(np.mean(accs),3)
105
  eval_result = EvalResult(result_key, org, model, revision, is_8bit, {benchmark:mean_acc})
106
 
107
  return result_key, eval_result
@@ -109,8 +94,12 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, dict]:
109
 
110
 
111
 
112
- def get_eval_results() -> List[EvalResult]:
113
- json_filepaths = glob.glob("evals/eval_results/**/*.json", recursive=True)
 
 
 
 
114
  eval_results = {}
115
 
116
  for json_filepath in json_filepaths:
@@ -125,8 +114,8 @@ def get_eval_results() -> List[EvalResult]:
125
 
126
  return eval_results
127
 
128
- def get_eval_results_dicts() -> List[Dict]:
129
- eval_results = get_eval_results()
130
 
131
  return [e.to_dict() for e in eval_results]
132
 
 
23
  "hendrycks":"MMLU (5-shot) ⬆️",
24
  "truthfulqa_mc":"TruthQA (0-shot) ⬆️",
25
  }
26
+ def make_clickable_model(model_name):
27
  # remove user from model name
28
  #model_name_show = ' '.join(model_name.split('/')[1:])
29
 
30
  link = "https://huggingface.co/" + model_name
31
  return f'<a target="_blank" href="{link}" style="color: blue; text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  @dataclass
34
  class EvalResult:
35
  eval_name : str
 
51
  data_dict["8bit"] = self.is_8bit
52
  data_dict["base_model"] = make_clickable_model(base_model)
53
  data_dict["revision"] = self.revision
54
+ data_dict["total ⬆️"] = round(sum([v for k,v in self.results.items()])/4.0,1)
55
+ #data_dict["# params"] = get_n_params(base_model)
56
 
57
  for benchmark in BENCHMARKS:
58
  if not benchmark in self.results.keys():
 
75
  model = path_split[-4]
76
  is_8bit = path_split[-2] == "8bit"
77
  revision = path_split[-3]
78
+ if len(path_split)== 7:
79
  # handles gpt2 type models that don't have an org
80
  result_key = f"{path_split[-4]}_{path_split[-3]}_{path_split[-2]}"
81
  else:
 
86
  for benchmark, metric in zip(BENCHMARKS, METRICS):
87
  if benchmark in json_filepath:
88
  accs = np.array([v[metric] for k, v in data["results"].items()])
89
+ mean_acc = round(np.mean(accs)*100.0,1)
90
  eval_result = EvalResult(result_key, org, model, revision, is_8bit, {benchmark:mean_acc})
91
 
92
  return result_key, eval_result
 
94
 
95
 
96
 
97
+ def get_eval_results(is_public) -> List[EvalResult]:
98
+ json_filepaths = glob.glob("evals/eval_results/public/**/16bit/*.json", recursive=True)
99
+ if not is_public:
100
+ json_filepaths += glob.glob("evals/eval_results/private/**/*.json", recursive=True)
101
+ json_filepaths += glob.glob("evals/eval_results/private/**/*.json", recursive=True)
102
+ json_filepaths += glob.glob("evals/eval_results/public/**/8bit/*.json", recursive=True) # include the 8bit evals of public models
103
  eval_results = {}
104
 
105
  for json_filepath in json_filepaths:
 
114
 
115
  return eval_results
116
 
117
+ def get_eval_results_dicts(is_public=True) -> List[Dict]:
118
+ eval_results = get_eval_results(is_public)
119
 
120
  return [e.to_dict() for e in eval_results]
121