djstrong commited on
Commit
ce8c09b
·
1 Parent(s): 1535574

output to json

Browse files
Files changed (2) hide show
  1. app.py +9 -4
  2. src/populate.py +3 -2
app.py CHANGED
@@ -43,14 +43,14 @@ def launch_backend():
43
  _ = subprocess.run(["python", "main_backend.py"])
44
 
45
  try:
46
- print(EVAL_REQUESTS_PATH)
47
  snapshot_download(
48
  repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
49
  )
50
  except Exception:
51
  restart_space()
52
  try:
53
- print(EVAL_RESULTS_PATH)
54
  snapshot_download(
55
  repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
56
  )
@@ -162,8 +162,8 @@ def filter_models(
162
  type_emoji = [t[0] for t in type_query]
163
  filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
164
  filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
165
- print(df[AutoEvalColumn.n_shot.name])
166
- print(nshot_query)
167
  filtered_df = filtered_df.loc[df[AutoEvalColumn.n_shot.name].isin(nshot_query + ["None"])]
168
 
169
  numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
@@ -403,12 +403,17 @@ with demo:
403
  show_copy_button=True,
404
  )
405
  csv = gr.File(interactive=False, value="output.csv", visible=False)
 
406
 
407
 
408
 
409
  def update_visibility(radio):
410
  return gr.File(interactive=False, value="output.csv", visible=True)
 
 
 
411
  deleted_models_visibility.change(update_visibility, deleted_models_visibility, csv)
 
412
 
413
  scheduler = BackgroundScheduler()
414
  scheduler.add_job(restart_space, "interval", seconds=1800)
 
43
  _ = subprocess.run(["python", "main_backend.py"])
44
 
45
  try:
46
+ # print(EVAL_REQUESTS_PATH)
47
  snapshot_download(
48
  repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
49
  )
50
  except Exception:
51
  restart_space()
52
  try:
53
+ # print(EVAL_RESULTS_PATH)
54
  snapshot_download(
55
  repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
56
  )
 
162
  type_emoji = [t[0] for t in type_query]
163
  filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
164
  filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
165
+ # print(df[AutoEvalColumn.n_shot.name])
166
+ # print(nshot_query)
167
  filtered_df = filtered_df.loc[df[AutoEvalColumn.n_shot.name].isin(nshot_query + ["None"])]
168
 
169
  numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
 
403
  show_copy_button=True,
404
  )
405
  csv = gr.File(interactive=False, value="output.csv", visible=False)
406
+ json = gr.File(interactive=False, value="all_data.json", visible=False)
407
 
408
 
409
 
410
  def update_visibility(radio):
411
  return gr.File(interactive=False, value="output.csv", visible=True)
412
+ def update_visibility_json(radio):
413
+ return gr.File(interactive=False, value="all_data.json", visible=True)
414
+
415
  deleted_models_visibility.change(update_visibility, deleted_models_visibility, csv)
416
+ deleted_models_visibility.change(update_visibility_json, deleted_models_visibility, json)
417
 
418
  scheduler = BackgroundScheduler()
419
  scheduler.add_job(restart_space, "interval", seconds=1800)
src/populate.py CHANGED
@@ -12,13 +12,14 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
12
  metadata=json.load(open(f"{requests_path}/metadata.json"))
13
  raw_data = get_raw_eval_results(results_path, requests_path, metadata)
14
  all_data_json = [v.to_dict() for v in raw_data]
15
- print(all_data_json)
 
16
  df = pd.DataFrame.from_records(all_data_json)
17
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
  df = df[cols].round(decimals=2)
19
 
20
  # filter out if any of the benchmarks have not been produced
21
- df2 = df[has_no_nan_values(df, benchmark_cols)]
22
  return raw_data, df
23
 
24
 
 
12
  metadata=json.load(open(f"{requests_path}/metadata.json"))
13
  raw_data = get_raw_eval_results(results_path, requests_path, metadata)
14
  all_data_json = [v.to_dict() for v in raw_data]
15
+ # print(all_data_json)
16
+ json.dump(all_data_json, open("all_data.json", "w"), indent=2, ensure_ascii=False)
17
  df = pd.DataFrame.from_records(all_data_json)
18
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
19
  df = df[cols].round(decimals=2)
20
 
21
  # filter out if any of the benchmarks have not been produced
22
+ #df2 = df[has_no_nan_values(df, benchmark_cols)]
23
  return raw_data, df
24
 
25