|
import os |
|
from dataclasses import dataclass |
|
|
|
from huggingface_hub import HfApi |
|
|
|
API = HfApi() |
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ColumnContent: |
|
name: str |
|
type: str |
|
displayed_by_default: bool |
|
hidden: bool = False |
|
|
|
|
|
def fields(raw_class): |
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] |
|
|
|
|
|
@dataclass(frozen=True) |
|
class AutoEvalColumn: |
|
model_type_symbol = ColumnContent("T", "str", True) |
|
model = ColumnContent("Model", "markdown", True) |
|
average = ColumnContent("Average ⬆️", "number", True) |
|
arc = ColumnContent("ARC", "number", True) |
|
hellaswag = ColumnContent("HellaSwag", "number", True) |
|
mmlu = ColumnContent("MMLU", "number", True) |
|
truthfulqa = ColumnContent("TruthfulQA", "number", True) |
|
winogrande = ColumnContent("Winogrande", "number", True) |
|
gsm8k = ColumnContent("GSM8K", "number", True) |
|
drop = ColumnContent("DROP", "number", True) |
|
model_type = ColumnContent("Type", "str", False) |
|
precision = ColumnContent("Precision", "str", False) |
|
license = ColumnContent("Hub License", "str", False) |
|
params = ColumnContent("#Params (B)", "number", False) |
|
likes = ColumnContent("Hub ❤️", "number", False) |
|
still_on_hub = ColumnContent("Available on the hub", "bool", False) |
|
revision = ColumnContent("Model sha", "str", False, False) |
|
dummy = ColumnContent( |
|
"model_name_for_query", "str", True |
|
) |
|
|
|
|
|
@dataclass(frozen=True) |
|
class EloEvalColumn: |
|
model = ColumnContent("Model", "markdown", True) |
|
gpt4 = ColumnContent("GPT-4 (all)", "number", True) |
|
human_all = ColumnContent("Human (all)", "number", True) |
|
human_instruct = ColumnContent("Human (instruct)", "number", True) |
|
human_code_instruct = ColumnContent("Human (code-instruct)", "number", True) |
|
|
|
|
|
@dataclass(frozen=True) |
|
class EvalQueueColumn: |
|
model = ColumnContent("model", "markdown", True) |
|
revision = ColumnContent("revision", "str", True) |
|
private = ColumnContent("private", "bool", True) |
|
precision = ColumnContent("precision", "str", True) |
|
weight_type = ColumnContent("weight_type", "str", "Original") |
|
status = ColumnContent("status", "str", True) |
|
|
|
|
|
LLAMAS = [ |
|
"huggingface/llama-7b", |
|
"huggingface/llama-13b", |
|
"huggingface/llama-30b", |
|
"huggingface/llama-65b", |
|
] |
|
|
|
|
|
KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF" |
|
VICUNA_LINK = "https://huggingface.co/lmsys/vicuna-13b-delta-v1.1" |
|
OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5" |
|
DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b" |
|
MODEL_PAGE = "https://huggingface.co/models" |
|
LLAMA_LINK = "https://ai.facebook.com/blog/large-language-model-llama-meta-ai/" |
|
VICUNA_LINK = "https://huggingface.co/CarperAI/stable-vicuna-13b-delta" |
|
ALPACA_LINK = "https://crfm.stanford.edu/2023/03/13/alpaca.html" |
|
|
|
|
|
def model_hyperlink(link, model_name): |
|
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' |
|
|
|
|
|
def make_clickable_model(model_name): |
|
link = f"https://huggingface.co/{model_name}" |
|
|
|
if model_name in LLAMAS: |
|
link = LLAMA_LINK |
|
model_name = model_name.split("/")[1] |
|
elif model_name == "HuggingFaceH4/stable-vicuna-13b-2904": |
|
link = VICUNA_LINK |
|
model_name = "stable-vicuna-13b" |
|
elif model_name == "HuggingFaceH4/llama-7b-ift-alpaca": |
|
link = ALPACA_LINK |
|
model_name = "alpaca-13b" |
|
if model_name == "dolly-12b": |
|
link = DOLLY_LINK |
|
elif model_name == "vicuna-13b": |
|
link = VICUNA_LINK |
|
elif model_name == "koala-13b": |
|
link = KOALA_LINK |
|
elif model_name == "oasst-12b": |
|
link = OASST_LINK |
|
|
|
details_model_name = model_name.replace("/", "__") |
|
details_link = f"https://huggingface.co/datasets/open-llm-leaderboard/details_{details_model_name}" |
|
|
|
if not bool(os.getenv("DEBUG", "False")): |
|
|
|
print(f"details_link: {details_link}") |
|
try: |
|
check_path = list( |
|
API.list_files_info( |
|
repo_id=f"open-llm-leaderboard/details_{details_model_name}", |
|
paths="README.md", |
|
repo_type="dataset", |
|
) |
|
) |
|
print(f"check_path: {check_path}") |
|
except Exception as err: |
|
|
|
print(f"No details repo for this model: {err}") |
|
return model_hyperlink(link, model_name) |
|
|
|
return model_hyperlink(link, model_name) + " " + model_hyperlink(details_link, "📑") |
|
|
|
|
|
def styled_error(error): |
|
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>" |
|
|
|
|
|
def styled_warning(warn): |
|
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>" |
|
|
|
|
|
def styled_message(message): |
|
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>" |
|
|
|
|
|
def has_no_nan_values(df, columns): |
|
return df[columns].notna().all(axis=1) |
|
|
|
|
|
def has_nan_values(df, columns): |
|
return df[columns].isna().any(axis=1) |
|
|