djstrong's picture
show gated
ee50884
raw
history blame
19.1 kB
import glob
import json
import math
import os
import re
from dataclasses import dataclass
import dateutil
import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, NShotType
from src.submission.check_validity import is_model_on_hub
NUM_FEWSHOT = 0
@dataclass
class EvalResult:
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
lang: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
n_shot: NShotType = NShotType.n0
org_and_model: str = ""
start_date: float = 0
@classmethod
def init_from_json_file(self, json_filepath, n_shot_num):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
n_shot = data.get("n-shot")
start_date = data.get("date", 0)
# Precision
precision = Precision.from_str(config.get("model_dtype"))
# Get model and org
org_and_model = config.get("model_name", config.get("model_args", None))
orig_org_and_model = org_and_model
SPICHLERZ_ORG = "speakleash/"
if re.match(r"^pretrained=(.*/(plgkwrobel|plggspkl)/)(models/)?", org_and_model):
org_and_model = re.sub(r"^pretrained=(.*/(plgkwrobel|plggspkl)/)(models/)?", SPICHLERZ_ORG, org_and_model)
org_and_model = org_and_model.replace(",dtype=bfloat16", "")
org_and_model = org_and_model.replace(",dtype=float16", "")
org_and_model = org_and_model.replace("models/hf_v7_e1", "APT3-1B-Instruct-e1")
org_and_model = org_and_model.replace("models/hf_v7_e2", "APT3-1B-Instruct-e2")
org_and_model = re.sub(r"^pretrained=", "", org_and_model)
org_and_model = org_and_model.replace(",trust_remote_code=True", "")
org_and_model = org_and_model.replace(",parallelize=True", "")
org_and_model = re.sub(",prefix_token_id=\d+", "", org_and_model)
org_and_model = re.sub("/$", "", org_and_model)
if org_and_model=='speakleash/mistral_7B-v2/spkl-only-e1_333887a5':
org_and_model='speakleash/Bielik-7B-v0.1'
elif org_and_model=='speakleash/mistral_7B-v2/spkl-only_sft_v2/e1_base/spkl-only_v10wa_7e6-e2_bbc67e89':
org_and_model='speakleash/Bielik-7B-Instruct-v0.1'
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{precision.value.name}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{precision.value.name}"
full_model = "/".join(org_and_model)
still_on_hub, err, model_config = is_model_on_hub(
full_model.split(',')[0], config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
if err:
print(full_model, err)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Extract results available in this file (some results are split in several files)
results = {}
for task in Tasks:
task = task.value
task_n_shot_num = n_shot_num
if 'perplexity' in task.metric: # perplexity is the same for 0-shot and 5-shot and is calculated only with 0-shot
task_n_shot_num = 0
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if
task.benchmark == k and n_shot.get(k, -1) == task_n_shot_num])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
if 'perplexity' in task.metric:
mean_acc = np.mean(accs)
else:
mean_acc = np.mean(accs) * 100.0
results[task.benchmark] = (mean_acc, start_date)
# results[task.benchmark] = mean_acc
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision=config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture,
n_shot=NShotType.from_str(n_shot_num),
org_and_model=orig_org_and_model,
start_date=start_date
)
def update_with_metadata(self, metadata):
# print('UPDATE', self.full_model, self.model, self.eval_name)
try:
meta = metadata[self.full_model]
self.model_type = ModelType.from_str(meta.get("type", "?"))
self.num_params = meta.get("params", 0)
self.license = meta.get("license", "?")
self.lang = meta.get("lang", "?")
# TODO desc name
except KeyError:
print(f"Could not find metadata for {self.full_model}")
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
return
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
g_tasks = [task.value.benchmark for task in Tasks if task.value.type == "generate_until"]
mc_tasks = [task.value.benchmark for task in Tasks if task.value.type == "multiple_choice"]
rag_tasks = ['polish_polqa_reranking_multiple_choice', 'polish_polqa_open_book']
all_tasks = g_tasks + mc_tasks
all_tasks_wo_polqa = [task for task in all_tasks if 'polqa' not in task]
baselines = {task.value.benchmark: task.value.baseline*100 for task in Tasks}
average_old = sum([v for task, v in self.results.items() if v is not None and task in all_tasks_wo_polqa]) / len(all_tasks_wo_polqa)
# average_g = sum([v for task, v in self.results.items() if v is not None and task in g_tasks]) / len(g_tasks)
# average_mc = sum([v for task, v in self.results.items() if v is not None and task in mc_tasks]) / len(mc_tasks)
# print('XXXXXXXXXXXX')
# print(self.eval_name)
# print(all_tasks)
# print(baselines)
# print(self.results)
# print('XXXXXXXXXXXX')
# average = sum([((v if v is not None else 0)-baselines.get(task,0))/(100-baselines.get(task,0))*100 for task, v in self.results.items() if task in all_tasks]) / len(all_tasks)
# average_g = sum([((v if v is not None else 0)-baselines.get(task,0))/(100-baselines.get(task,0))*100 for task, v in self.results.items() if task in g_tasks]) / len(g_tasks)
# average_mc = sum([((v if v is not None else 0)-baselines.get(task,0))/(100-baselines.get(task,0))*100 for task, v in self.results.items() if task in mc_tasks]) / len(mc_tasks)
average = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in all_tasks]) / len(all_tasks)
average_g = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in g_tasks]) / len(g_tasks)
average_mc = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in mc_tasks]) / len(mc_tasks)
average_rag = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in rag_tasks]) / len(rag_tasks)
data_dict = {}
# data_dict = {
# "eval_name": self.eval_name, # not a column, just a save name,
# AutoEvalColumn.precision.name: self.precision.value.name,
# AutoEvalColumn.model_type.name: self.model_type.value.name,
# AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
# AutoEvalColumn.architecture.name: self.architecture,
# AutoEvalColumn.model.name: make_clickable_model(self.full_model),
# AutoEvalColumn.dummy.name: self.full_model,
# AutoEvalColumn.revision.name: self.revision,
# AutoEvalColumn.average.name: average,
# AutoEvalColumn.license.name: self.license,
# AutoEvalColumn.likes.name: self.likes,
# AutoEvalColumn.params.name: self.num_params,
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
# }
try:
data_dict["eval_name"] = self.eval_name
except KeyError:
print(f"Could not find eval name")
try:
data_dict[AutoEvalColumn.precision.name] = self.precision.value.name
except KeyError:
print(f"Could not find precision")
except AttributeError:
print(f"AttributeError precision")
try:
data_dict[AutoEvalColumn.model_type.name] = self.model_type.value.name
except KeyError:
print(f"Could not find model type")
try:
data_dict[AutoEvalColumn.model_type_symbol.name] = self.model_type.value.symbol
except KeyError:
print(f"Could not find model type symbol")
except AttributeError:
print(f"AttributeError model_type")
try:
data_dict[AutoEvalColumn.weight_type.name] = self.weight_type.value.name
except KeyError:
print(f"Could not find weight type")
try:
data_dict[AutoEvalColumn.architecture.name] = self.architecture
except KeyError:
print(f"Could not find architecture")
except AttributeError:
print(f"AttributeError architecture")
try:
data_dict[AutoEvalColumn.model.name] = make_clickable_model(
self.full_model) if self.still_on_hub else self.full_model
except KeyError:
print(f"Could not find model")
try:
data_dict[AutoEvalColumn.dummy.name] = self.full_model
except KeyError:
print(f"Could not find dummy")
try:
data_dict[AutoEvalColumn.revision.name] = self.revision
except KeyError:
print(f"Could not find revision")
except AttributeError:
print(f"AttributeError revision")
try:
data_dict[AutoEvalColumn.average_old.name] = average_old
except KeyError:
print(f"Could not find average_old")
try:
data_dict[AutoEvalColumn.average.name] = average
except KeyError:
print(f"Could not find average")
try:
data_dict[AutoEvalColumn.average_g.name] = average_g
except KeyError:
print(f"Could not find average_g")
try:
data_dict[AutoEvalColumn.average_mc.name] = average_mc
except KeyError:
print(f"Could not find average_mc")
try:
data_dict[AutoEvalColumn.average_rag.name] = average_rag
except KeyError:
print(f"Could not find average_rag")
try:
data_dict[AutoEvalColumn.license.name] = self.license
except KeyError:
print(f"Could not find license")
except AttributeError:
print(f"AttributeError license")
try:
data_dict[AutoEvalColumn.lang.name] = self.lang
except KeyError:
print(f"Could not find lang")
except AttributeError:
print(f"AttributeError lang")
try:
data_dict[AutoEvalColumn.likes.name] = self.likes
except KeyError:
print(f"Could not find likes")
except AttributeError:
print(f"AttributeError likes")
try:
data_dict[AutoEvalColumn.params.name] = self.num_params
except KeyError:
print(f"Could not find params")
except AttributeError:
print(f"AttributeError params")
try:
data_dict[AutoEvalColumn.still_on_hub.name] = self.still_on_hub
except KeyError:
print(f"Could not find still on hub")
except AttributeError:
print(f"AttributeError stillonhub")
try:
data_dict[AutoEvalColumn.n_shot.name] = self.n_shot.value.name
except KeyError:
print(f"Could not find still on hub")
for task in Tasks:
try:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
except KeyError:
print(f"Could not find {task.value.col_name}")
data_dict[task.value.col_name] = None
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str, metadata) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
# print('PATHS:', model_result_filepaths)
eval_results = {}
for n_shot in [0, 5]:
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath, n_shot_num=n_shot)
eval_result.update_with_request_file(requests_path)
# update with metadata
eval_result.update_with_metadata(metadata)
# Store results of same eval together
eval_name = f"{eval_result.eval_name}_{n_shot}-shot"
if eval_name in eval_results.keys():
for k, (v, start_date) in eval_result.results.items():
if v is not None:
if k in eval_results[eval_name].results:
if start_date > eval_results[eval_name].results[k][1]:
print(
f"Overwriting {eval_name}.results {k} {eval_results[eval_name].results[k]} with {v}: {model_result_filepath} {n_shot} {eval_result.start_date} {eval_results[eval_name].start_date}")
eval_results[eval_name].results[k] = (v, start_date)
else:
print(
f"Skipping {eval_name} {eval_result.start_date} {eval_results[eval_name].start_date}: {model_result_filepath} {n_shot}")
else:
eval_results[eval_name].results[k] = (v, start_date)
# eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
# TODO: log updated
else:
eval_results[eval_name] = eval_result
for k,v in eval_results.items():
v.results = {k: v for k, (v, start_date) in v.results.items()}
results = []
for v in eval_results.values():
try:
print(v)
v.to_dict() # we test if the dict version is complete
# if v.results:
results.append(v)
except KeyError: # not all eval values present
print(f"not all eval values present {v.eval_name} {v.full_model}")
continue
missing_results_for_task = {}
missing_metadata = []
for v in eval_results.values():
r = v.to_dict()
for task in Tasks:
if r[task.value.col_name] is None:
task_name = f"{r['n_shot']}|{task.value.benchmark}"
if task_name in missing_results_for_task:
missing_results_for_task[task_name].append(f"{v.full_model}|{v.org_and_model}")
else:
missing_results_for_task[task_name] = [f"{v.full_model}|{v.org_and_model}"]
if r[AutoEvalColumn.lang.name] is None or r[AutoEvalColumn.lang.name] == "?":
missing_metadata.append(f"{v.full_model}")
# print('missing_results_for_task', missing_results_for_task)
for task, models in missing_results_for_task.items():
print(f"Missing results for {task} for {len(models)} models")
# print(" ".join(models))
for model in models:
print(f'"{model}"')
print()
print(f"Missing metadata for {len(missing_metadata)} models")
for model in missing_metadata:
print(model)
print()
return results