|
from dataclasses import dataclass |
|
from enum import Enum |
|
|
|
@dataclass(frozen=True) |
|
class Task: |
|
benchmark: str |
|
metric: str |
|
col_name: str |
|
type: str |
|
baseline: float = 0.0 |
|
|
|
|
|
|
|
|
|
class Tasks(Enum): |
|
|
|
|
|
task3 = Task("polemo2_in", "exact_match,score-first", "polemo2-in_g", "generate_until", 0.416) |
|
task4 = Task("polemo2_in_multiple_choice", "acc,none", "polemo2-in_mc", "multiple_choice", 0.416) |
|
task5 = Task("polemo2_out", "exact_match,score-first", "polemo2-out_g", "generate_until", 0.368) |
|
task6 = Task("polemo2_out_multiple_choice", "acc,none", "polemo2-out_mc", "multiple_choice", 0.368) |
|
task7 = Task("polish_8tags_multiple_choice", "acc,none", "8tags_mc", "multiple_choice", 0.143) |
|
task8 = Task("polish_8tags_regex", "exact_match,score-first", "8tags_g", "generate_until", 0.143) |
|
task9a = Task("polish_belebele_mc", "acc,none", "belebele_mc", "multiple_choice", 0.279) |
|
task9 = Task("polish_belebele_regex", "exact_match,score-first", "belebele_g", "generate_until", 0.279) |
|
task10 = Task("polish_dyk_multiple_choice", "f1,none", "dyk_mc", "multiple_choice", 0.289) |
|
task11 = Task("polish_dyk_regex", "f1,score-first", "dyk_g", "generate_until", 0.289) |
|
task12 = Task("polish_ppc_multiple_choice", "acc,none", "ppc_mc", "multiple_choice", 0.419) |
|
task13 = Task("polish_ppc_regex", "exact_match,score-first", "ppc_g", "generate_until", 0.419) |
|
task14 = Task("polish_psc_multiple_choice", "f1,none", "psc_mc", "multiple_choice", 0.466) |
|
|
|
task16 = Task("polish_cbd_multiple_choice", "f1,none", "cbd_mc", "multiple_choice", 0.149) |
|
task17 = Task("polish_cbd_regex", "f1,score-first", "cbd_g", "generate_until", 0.149) |
|
task18 = Task("polish_klej_ner_multiple_choice", "acc,none", "klej_ner_mc", "multiple_choice", 0.343) |
|
task19 = Task("polish_klej_ner_regex", "exact_match,score-first", "klej_ner_g", "generate_until", 0.343) |
|
task21 = Task("polish_polqa_reranking_multiple_choice", "acc,none", "polqa_reranking_mc", "multiple_choice", 0.5335588952710677) |
|
task22 = Task("polish_polqa_open_book", "levenshtein,none", "polqa_open_book_g", "generate_until", 0.0) |
|
task23 = Task("polish_polqa_closed_book", "levenshtein,none", "polqa_closed_book_g", "generate_until", 0.0) |
|
task20 = Task("polish_poleval2018_task3_test_10k", "word_perplexity,none", "poleval2018_task3_test_10k", "other") |
|
|
|
NUM_FEWSHOT = 0 |
|
|
|
|
|
|
|
|
|
|
|
TITLE = """ |
|
<div style="display: flex; flex-wrap: wrap; justify-content: space-around;"> |
|
<img src="https://speakleash.org/wp-content/uploads/2023/09/SpeakLeash_logo.svg"> |
|
<div> |
|
<h1 align="center" id="space-title">Open PL LLM Leaderboard (0-shot and 5-shot)</h1> |
|
<h2 align="center" id="space-subtitle">Leaderboard was created as part of an open-science project SpeakLeash.org</h2> |
|
</div> |
|
</div> |
|
""" |
|
|
|
|
|
INTRODUCTION_TEXT = """ |
|
The leaderboard evaluates language models on a set of Polish tasks. The tasks are designed to test the models' ability to understand and generate Polish text. The leaderboard is designed to be a benchmark for the Polish language model community, and to help researchers and practitioners understand the capabilities of different models. |
|
For now, models are tested without theirs templates. |
|
|
|
Almost every task has two versions: regex and multiple choice. |
|
* _g suffix means that a model needs to generate an answer (only suitable for instructions-based models) |
|
* _mc suffix means that a model is scored against every possible class (suitable also for base models) |
|
|
|
Average columns are normalized against scores by "Baseline (majority class)". |
|
|
|
We gratefully acknowledge Polish high-performance computing infrastructure PLGrid (HPC Centers: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2024/016951. |
|
""" |
|
|
|
|
|
LLM_BENCHMARKS_TEXT = f""" |
|
## Do you want to add your model to the leaderboard? |
|
|
|
Contact with me: [LinkedIn](https://www.linkedin.com/in/wrobelkrzysztof/) |
|
|
|
or join our [Discord SpeakLeash](https://discord.gg/3G9DVM39) |
|
|
|
## TODO |
|
|
|
* fix long model names |
|
* add inference time |
|
* add more tasks |
|
* use model templates |
|
* fix scrolling on Firefox |
|
|
|
## Tasks |
|
|
|
| Task | Dataset | Metric | Type | |
|
|---------------------------------|---------------------------------------|-----------|-----------------| |
|
| polemo2_in | allegro/klej-polemo2-in | accuracy | generate_until | |
|
| polemo2_in_mc | allegro/klej-polemo2-in | accuracy | multiple_choice | |
|
| polemo2_out | allegro/klej-polemo2-out | accuracy | generate_until | |
|
| polemo2_out_mc | allegro/klej-polemo2-out | accuracy | multiple_choice | |
|
| 8tags_mc | sdadas/8tags | accuracy | multiple_choice | |
|
| 8tags_g | sdadas/8tags | accuracy | generate_until | |
|
| belebele_mc | facebook/belebele | accuracy | multiple_choice | |
|
| belebele_g | facebook/belebele | accuracy | generate_until | |
|
| dyk_mc | allegro/klej-dyk | binary F1 | multiple_choice | |
|
| dyk_g | allegro/klej-dyk | binary F1 | generate_until | |
|
| ppc_mc | sdadas/ppc | accuracy | multiple_choice | |
|
| ppc_g | sdadas/ppc | accuracy | generate_until | |
|
| psc_mc | allegro/klej-psc | binary F1 | multiple_choice | |
|
| psc_g | allegro/klej-psc | binary F1 | generate_until | |
|
| cbd_mc | ptaszynski/PolishCyberbullyingDataset | macro F1 | multiple_choice | |
|
| cbd_g | ptaszynski/PolishCyberbullyingDataset | macro F1 | generate_until | |
|
| klej_ner_mc | allegro/klej-nkjp-ner | accuracy | multiple_choice | |
|
| klej_ner_g | allegro/klej-nkjp-ner | accuracy | generate_until | |
|
| polqa_reranking_mc | ipipan/polqa | accuracy | multiple_choice | |
|
| polqa_open_book_g | ipipan/polqa | levenshtein | generate_until | |
|
| polqa_closed_book_g | ipipan/polqa | levenshtein | generate_until | |
|
| poleval2018_task3_test_10k | enelpol/poleval2018_task3_test_10k | word perplexity | other | |
|
|
|
## Reproducibility |
|
To reproduce our results, you need to clone the repository: |
|
|
|
``` |
|
git clone https://github.com/speakleash/lm-evaluation-harness.git -b polish |
|
cd lm-evaluation-harness |
|
pip install -e . |
|
``` |
|
|
|
and run benchmark for 0-shot and 5-shot: |
|
|
|
``` |
|
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish --num_fewshot 0 --device cuda:0 --batch_size 16 --verbosity DEBUG --output_path results/ --log_samples |
|
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish --num_fewshot 5 --device cuda:0 --batch_size 16 --verbosity DEBUG --output_path results/ --log_samples |
|
``` |
|
|
|
## List of Polish models |
|
|
|
* speakleash/Bielik-7B-Instruct-v0.1 |
|
* speakleash/Bielik-7B-v0.1 |
|
* Azurro/APT3-1B-Base |
|
* Azurro/APT3-1B-Instruct-v1 |
|
* Voicelab/trurl-2-7b |
|
* Voicelab/trurl-2-13b-academic |
|
* OPI-PG/Qra-1b |
|
* OPI-PG/Qra-7b |
|
* OPI-PG/Qra-13b |
|
* szymonrucinski/Curie-7B-v1 |
|
* sdadas/polish-gpt2-xl |
|
|
|
### List of multilingual models |
|
|
|
* meta-llama/Llama-2-7b-chat-hf |
|
* mistralai/Mistral-7B-Instruct-v0.1 |
|
* HuggingFaceH4/zephyr-7b-beta |
|
* HuggingFaceH4/zephyr-7b-alpha |
|
* internlm/internlm2-chat-7b-sft |
|
* internlm/internlm2-chat-7b |
|
* mistralai/Mistral-7B-Instruct-v0.2 |
|
* teknium/OpenHermes-2.5-Mistral-7B |
|
* openchat/openchat-3.5-1210 |
|
* Nexusflow/Starling-LM-7B-beta |
|
* openchat/openchat-3.5-0106 |
|
* berkeley-nest/Starling-LM-7B-alpha |
|
* upstage/SOLAR-10.7B-Instruct-v1.0 |
|
* meta-llama/Llama-2-7b-hf |
|
* internlm/internlm2-base-7b |
|
* mistralai/Mistral-7B-v0.1 |
|
* internlm/internlm2-7b |
|
* alpindale/Mistral-7B-v0.2-hf |
|
* internlm/internlm2-1_8b |
|
|
|
|
|
|
|
""" |
|
|
|
EVALUATION_QUEUE_TEXT = """ |
|
## Some good practices before submitting a model |
|
|
|
### 1) Make sure you can load your model and tokenizer using AutoClasses: |
|
```python |
|
from transformers import AutoConfig, AutoModel, AutoTokenizer |
|
config = AutoConfig.from_pretrained("your model name", revision=revision) |
|
model = AutoModel.from_pretrained("your model name", revision=revision) |
|
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision) |
|
``` |
|
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded. |
|
|
|
Note: make sure your model is public! |
|
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted! |
|
|
|
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index) |
|
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`! |
|
|
|
### 3) Make sure your model has an open license! |
|
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗 |
|
|
|
### 4) Fill up your model card |
|
When we add extra information about models to the leaderboard, it will be automatically taken from the model card |
|
|
|
## In case of model failure |
|
If your model is displayed in the `FAILED` category, its execution stopped. |
|
Make sure you have followed the above steps first. |
|
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task). |
|
""" |
|
|
|
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" |
|
CITATION_BUTTON_TEXT = r""" |
|
@misc{open-pl-llm-leaderboard, |
|
title = {Open PL LLM Leaderboard}, |
|
author = {Wróbel, Krzysztof and {SpeakLeash Team} and {Cyfronet Team}}, |
|
year = 2024, |
|
publisher = {Hugging Face}, |
|
howpublished = "\url{https://huggingface.co/spaces/speakleash/open_pl_llm_leaderboard}" |
|
} |
|
""" |
|
|