Spaces:
Restarting
Restarting
import subprocess | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from pandas.io.formats.style import Styler | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, Tasks, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision, | |
NShotType, | |
) | |
from src.envs import API, DEVICE, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
# subprocess.run(["python", "scripts/fix_harness_import.py"]) | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
def launch_backend(): | |
_ = subprocess.run(["python", "main_backend.py"]) | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
leaderboard_df = original_df.copy() | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
def style_df(df: pd.DataFrame) -> Styler: | |
# new_df = df.copy(deep=True) | |
# new_df['polish_poleval2018_task3_test_10k'] = -new_df['polish_poleval2018_task3_test_10k'] | |
# new_df = new_df.to_frame() | |
leaderboard_df_styled = df.style.background_gradient(cmap="RdYlGn") | |
leaderboard_df_styled = leaderboard_df_styled.background_gradient(cmap="RdYlGn_r", subset=['poleval2018_task3_test_10k', '#Params (B)']) | |
rounding = {'#Params (B)': "{:.1f}"} | |
for task in Tasks: | |
rounding[task.value.col_name] = "{:.2f}" | |
for column_name in ["Average β¬οΈ", "Avg g", "Avg mc", "Average old", "Avg RAG"]: | |
rounding[column_name] = "{:.2f}" | |
leaderboard_df_styled = leaderboard_df_styled.format(rounding) | |
return leaderboard_df_styled | |
# Searching and filtering | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
type_query: list, | |
precision_query: str, | |
size_query: list, | |
nshot_query: list, | |
show_deleted: bool, | |
query: str, | |
): | |
filtered_df = filter_models(hidden_df, type_query, size_query, nshot_query, precision_query, show_deleted) | |
filtered_df = filter_queries(query, filtered_df) | |
df = select_columns(filtered_df, columns) | |
df = df.replace({'': np.nan}) | |
return style_df(df) | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [ | |
AutoEvalColumn.model_type_symbol.name, | |
AutoEvalColumn.model.name, | |
] | |
# We use COLS to maintain sorting | |
filtered_df = df[ | |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name] | |
] | |
return filtered_df | |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[AutoEvalColumn.model.name, AutoEvalColumn.n_shot.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | |
) | |
return filtered_df | |
def filter_models( | |
df: pd.DataFrame, type_query: list, size_query: list, nshot_query: list, precision_query: list, show_deleted: bool | |
) -> pd.DataFrame: | |
# Show all models | |
if show_deleted: | |
filtered_df = df | |
else: # Show only still on the hub models | |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] | |
type_emoji = [t[0] for t in type_query] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
print(df[AutoEvalColumn.n_shot.name]) | |
print(nshot_query) | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.n_shot.name].isin(nshot_query + ["None"])] | |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
filtered_df = filtered_df.loc[mask] | |
return filtered_df | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
# with gr.Box(elem_id="box-filter"): | |
filter_columns_type = gr.CheckboxGroup( | |
label="Model types", | |
choices=[t.to_str() for t in ModelType], | |
value=[t.to_str() for t in ModelType], | |
interactive=True, | |
elem_id="filter-columns-type", | |
visible=True, | |
) | |
filter_columns_precision = gr.CheckboxGroup( | |
label="Precision", | |
choices=[i.value.name for i in Precision], | |
value=[i.value.name for i in Precision], | |
interactive=True, | |
elem_id="filter-columns-precision", | |
visible=False, | |
) | |
filter_columns_size = gr.CheckboxGroup( | |
label="Model sizes (in billions of parameters)", | |
choices=list(NUMERIC_INTERVALS.keys()), | |
value=list(NUMERIC_INTERVALS.keys()), | |
interactive=True, | |
elem_id="filter-columns-size", | |
visible=True, | |
) | |
filter_columns_nshot = gr.CheckboxGroup( | |
label="N-shot", | |
choices=[i.value.name for i in NShotType], | |
value=[i.value.name for i in NShotType], | |
interactive=True, | |
elem_id="filter-columns-nshot", | |
) | |
with gr.Row(): | |
deleted_models_visibility = gr.Checkbox( | |
value=True, label="Show gated/private/deleted models", interactive=True | |
) | |
with gr.Column(min_width=320): | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if not c.hidden and not c.never_hidden and not c.dummy | |
], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
leaderboard_table_value=leaderboard_df[ | |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
+ shown_columns.value | |
+ [AutoEvalColumn.dummy.name] | |
] | |
leaderboard_df_styled=style_df(leaderboard_table_value) | |
leaderboard_df_styled.precision = 2 | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df_styled, | |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
# column_widths=["2%", "33%"] | |
height=800 | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df[COLS], | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
filter_columns_nshot, | |
deleted_models_visibility, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_nshot, deleted_models_visibility]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
filter_columns_nshot, | |
deleted_models_visibility, | |
search_bar, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
# with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
# with gr.Column(): | |
# with gr.Row(): | |
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
# | |
# with gr.Column(): | |
# with gr.Accordion( | |
# f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# finished_eval_table = gr.components.Dataframe( | |
# value=finished_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
# with gr.Accordion( | |
# f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# running_eval_table = gr.components.Dataframe( | |
# value=running_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
# | |
# with gr.Accordion( | |
# f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# pending_eval_table = gr.components.Dataframe( | |
# value=pending_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
# with gr.Row(): | |
# gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
# | |
# with gr.Row(): | |
# with gr.Column(): | |
# model_name_textbox = gr.Textbox(label="Model name") | |
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
# model_type = gr.Dropdown( | |
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
# label="Model type", | |
# multiselect=False, | |
# value=None, | |
# interactive=True, | |
# ) | |
# | |
# with gr.Column(): | |
# precision = gr.Dropdown( | |
# choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
# label="Precision", | |
# multiselect=False, | |
# value="float16" if DEVICE != "cpu" else "float32", | |
# interactive=True, | |
# ) | |
# weight_type = gr.Dropdown( | |
# choices=[i.value.name for i in WeightType], | |
# label="Weights type", | |
# multiselect=False, | |
# value="Original", | |
# interactive=True, | |
# ) | |
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
# | |
# submit_button = gr.Button("Submit Eval") | |
# submission_result = gr.Markdown() | |
# submit_button.click( | |
# add_new_eval, | |
# [ | |
# model_name_textbox, | |
# base_model_name_textbox, | |
# revision_name_textbox, | |
# precision, | |
# weight_type, | |
# model_type, | |
# ], | |
# submission_result, | |
# ) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
# scheduler.add_job(launch_backend, "interval", seconds=100) # will only allow one job to be run at the same time | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() |