|
from dataclasses import dataclass |
|
from enum import Enum |
|
|
|
@dataclass(frozen=True) |
|
class Task: |
|
benchmark: str |
|
metric: str |
|
col_name: str |
|
type: str |
|
|
|
|
|
|
|
|
|
class Tasks(Enum): |
|
|
|
task2 = Task("belebele_pol_Latn", "acc,none", "belebele_pol_Latn", "multiple_choice") |
|
task3 = Task("polemo2_in", "exact_match,score-first", "polemo2-in_g", "generate_until") |
|
task4 = Task("polemo2_in_multiple_choice", "acc,none", "polemo2-in_mc", "multiple_choice") |
|
task5 = Task("polemo2_out", "exact_match,score-first", "polemo2-out_g", "generate_until") |
|
task6 = Task("polemo2_out_multiple_choice", "acc,none", "polemo2-out_mc", "multiple_choice") |
|
task7 = Task("polish_8tags_multiple_choice", "acc,none", "8tags_mc", "multiple_choice") |
|
task8 = Task("polish_8tags_regex", "exact_match,score-first", "8tags_g", "generate_until") |
|
task9 = Task("polish_belebele_regex", "exact_match,score-first", "belebele_g", "generate_until") |
|
task10 = Task("polish_dyk_multiple_choice", "f1,none", "dyk_mc", "multiple_choice") |
|
task11 = Task("polish_dyk_regex", "f1,score-first", "dyk_g", "generate_until") |
|
task12 = Task("polish_ppc_multiple_choice", "acc,none", "ppc_mc", "multiple_choice") |
|
task13 = Task("polish_ppc_regex", "exact_match,score-first", "ppc_g", "generate_until") |
|
task14 = Task("polish_psc_multiple_choice", "f1,none", "psc_mc", "multiple_choice") |
|
task15 = Task("polish_psc_regex", "f1,score-first", "psc_g", "generate_until") |
|
task16 = Task("polish_cbd_multiple_choice", "f1,none", "cbd_mc", "multiple_choice") |
|
task17 = Task("polish_cbd_regex", "f1,score-first", "cbd_g", "generate_until") |
|
task18 = Task("polish_klej_ner_multiple_choice", "acc,none", "klej_ner_mc", "multiple_choice") |
|
task19 = Task("polish_klej_ner_regex", "exact_match,score-first", "klej_ner_g", "generate_until") |
|
|
|
NUM_FEWSHOT = 0 |
|
|
|
|
|
|
|
|
|
|
|
TITLE = """ |
|
<div style="display: flex; flex-wrap: wrap; justify-content: space-around;"> |
|
<img src="https://speakleash.org/wp-content/uploads/2023/09/SpeakLeash_logo.svg"> |
|
<div> |
|
<h1 align="center" id="space-title">Open PL LLM Leaderboard (0-shot and 5-shot)</h1> |
|
<h2 align="center" id="space-subtitle">Leaderboard was created as part of an open-science project SpeakLeash.org</h2> |
|
</div> |
|
</div> |
|
""" |
|
|
|
|
|
INTRODUCTION_TEXT = """ |
|
The leaderboard evaluates language models on a set of Polish tasks. The tasks are designed to test the models' ability to understand and generate Polish text. The leaderboard is designed to be a benchmark for the Polish language model community, and to help researchers and practitioners understand the capabilities of different models. |
|
|
|
Almost every task has two versions: regex and multiple choice. The regex version is scored based on exact match, while the multiple choice version is scored based on accuracy. |
|
* _g suffix means that a model needs to generate an answer (only suitable for instructions-based models) |
|
* _mc suffix means that a model is scored against every possible class (suitable also for base models) |
|
""" |
|
|
|
|
|
LLM_BENCHMARKS_TEXT = f""" |
|
## Do you want to add your model to the leaderboard? |
|
|
|
Contact with me: [LinkedIn](https://www.linkedin.com/in/wrobelkrzysztof/) |
|
|
|
or join our [Discord SpeakLeash](https://discord.gg/3G9DVM39) |
|
|
|
## TODO |
|
|
|
* fix long model names |
|
* add inference time |
|
* add metadata for models (e.g. #Params) |
|
* add more tasks |
|
* use model templates |
|
|
|
## Tasks |
|
|
|
| Task | Dataset | Metric | Type | |
|
|---------------------------------|---------------------------------------|-----------|-----------------| |
|
| belebele_pol_Latn | facebook/belebele | accuracy | multiple_choice | |
|
| polemo2_in | allegro/klej-polemo2-in | accuracy | generate_until | |
|
| polemo2_in_multiple_choice | allegro/klej-polemo2-in | accuracy | multiple_choice | |
|
| polemo2_out | allegro/klej-polemo2-out | accuracy | generate_until | |
|
| polemo2_out_multiple_choice | allegro/klej-polemo2-out | accuracy | multiple_choice | |
|
| polish_8tags_multiple_choice | sdadas/8tags | accuracy | multiple_choice | |
|
| polish_8tags_regex | sdadas/8tags | accuracy | generate_until | |
|
| polish_belebele_regex | facebook/belebele | accuracy | generate_until | |
|
| polish_dyk_multiple_choice | allegro/klej-dyk | binary F1 | multiple_choice | |
|
| polish_dyk_regex | allegro/klej-dyk | binary F1 | generate_until | |
|
| polish_ppc_multiple_choice | sdadas/ppc | accuracy | multiple_choice | |
|
| polish_ppc_regex | sdadas/ppc | accuracy | generate_until | |
|
| polish_psc_multiple_choice | allegro/klej-psc | binary F1 | multiple_choice | |
|
| polish_psc_regex | allegro/klej-psc | binary F1 | generate_until | |
|
| polish_cbd_multiple_choice | ptaszynski/PolishCyberbullyingDataset | macro F1 | multiple_choice | |
|
| polish_cbd_regex | ptaszynski/PolishCyberbullyingDataset | macro F1 | generate_until | |
|
| polish_klej_ner_multiple_choice | allegro/klej-nkjp-ner | accuracy | multiple_choice | |
|
| polish_klej_ner_regex | allegro/klej-nkjp-ner | accuracy | generate_until | |
|
|
|
|
|
## Reproducibility |
|
To reproduce our results, you need to clone the repository: |
|
|
|
``` |
|
git clone https://github.com/speakleash/lm-evaluation-harness.git |
|
cd lm-evaluation-harness |
|
pip install -e . |
|
``` |
|
|
|
and run benchmark for 0-shot and 5-shot: |
|
|
|
``` |
|
lm_eval --model hf --model_args pretrained=Azurro/APT3-1B-Base --tasks polish --num_fewshot 0 --device cuda:0 --batch_size 16 --verbosity DEBUG --output_path results/ --log_samples |
|
lm_eval --model hf --model_args pretrained=Azurro/APT3-1B-Base --tasks polish --num_fewshot 5 --device cuda:0 --batch_size 16 --verbosity DEBUG --output_path results/ --log_samples |
|
``` |
|
|
|
""" |
|
|
|
EVALUATION_QUEUE_TEXT = """ |
|
## Some good practices before submitting a model |
|
|
|
### 1) Make sure you can load your model and tokenizer using AutoClasses: |
|
```python |
|
from transformers import AutoConfig, AutoModel, AutoTokenizer |
|
config = AutoConfig.from_pretrained("your model name", revision=revision) |
|
model = AutoModel.from_pretrained("your model name", revision=revision) |
|
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision) |
|
``` |
|
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded. |
|
|
|
Note: make sure your model is public! |
|
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted! |
|
|
|
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index) |
|
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`! |
|
|
|
### 3) Make sure your model has an open license! |
|
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗 |
|
|
|
### 4) Fill up your model card |
|
When we add extra information about models to the leaderboard, it will be automatically taken from the model card |
|
|
|
## In case of model failure |
|
If your model is displayed in the `FAILED` category, its execution stopped. |
|
Make sure you have followed the above steps first. |
|
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task). |
|
""" |
|
|
|
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" |
|
CITATION_BUTTON_TEXT = r""" |
|
@misc{open-pl-llm-leaderboard, |
|
title = {Open PL LLM Leaderboard}, |
|
author = {Wróbel, Krzysztof and {SpeakLeash Team} and {Cyfronet Team}}, |
|
year = 2024, |
|
publisher = {Hugging Face}, |
|
howpublished = "\url{https://huggingface.co/spaces/speakleash/open_pl_llm_leaderboard}" |
|
} |
|
""" |
|
|