|
import glob |
|
import json |
|
import math |
|
import os |
|
import re |
|
from dataclasses import dataclass |
|
|
|
import dateutil |
|
import numpy as np |
|
|
|
from src.about import all_tasks, g_tasks, mc_tasks, rag_tasks |
|
from src.display.formatting import make_clickable_model |
|
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, NShotType |
|
from src.submission.check_validity import is_model_on_hub |
|
|
|
NUM_FEWSHOT = 0 |
|
|
|
|
|
@dataclass |
|
class EvalResult: |
|
eval_name: str |
|
full_model: str |
|
org: str |
|
model: str |
|
revision: str |
|
results: dict |
|
precision: Precision = Precision.Unknown |
|
model_type: ModelType = ModelType.Unknown |
|
weight_type: WeightType = WeightType.Original |
|
architecture: str = "Unknown" |
|
license: str = "?" |
|
lang: str = "?" |
|
likes: int = 0 |
|
num_params: int = 0 |
|
date: str = "" |
|
still_on_hub: bool = False |
|
n_shot: NShotType = NShotType.n0 |
|
org_and_model: str = "" |
|
start_date: float = 0 |
|
|
|
@classmethod |
|
def init_from_json_file(self, json_filepath, n_shot_num): |
|
"""Inits the result from the specific model result file""" |
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
|
|
config = data.get("config") |
|
n_shot = data.get("n-shot") |
|
start_date = data.get("date", 0) |
|
chat_template = data.get("chat_template", None) |
|
fewshot_as_multiturn = data.get("fewshot_as_multiturn", False) |
|
|
|
|
|
precision = Precision.from_str(config.get("model_dtype")) |
|
|
|
|
|
org_and_model = config.get("model_name", config.get("model_args", None)) |
|
orig_org_and_model = org_and_model |
|
SPICHLERZ_ORG = "speakleash/" |
|
|
|
if re.match(r"^pretrained=(.*/(plgkwrobel|plggspkl)/)(models/)?", org_and_model): |
|
org_and_model = re.sub(r"^pretrained=(.*/(plgkwrobel|plggspkl)/)(models/)?", SPICHLERZ_ORG, org_and_model) |
|
|
|
org_and_model = org_and_model.replace(",dtype=bfloat16", "") |
|
org_and_model = org_and_model.replace(",dtype=float16", "") |
|
|
|
org_and_model = org_and_model.replace("models/hf_v7_e1", "APT3-1B-Instruct-e1") |
|
org_and_model = org_and_model.replace("models/hf_v7_e2", "APT3-1B-Instruct-e2") |
|
|
|
org_and_model = re.sub(r"^pretrained=", "", org_and_model) |
|
org_and_model = org_and_model.replace(",trust_remote_code=True", "") |
|
org_and_model = org_and_model.replace(",parallelize=True", "") |
|
org_and_model = re.sub(",prefix_token_id=\d+", "", org_and_model) |
|
org_and_model = re.sub("/$", "", org_and_model) |
|
|
|
if org_and_model=='speakleash/mistral_7B-v2/spkl-only-e1_333887a5': |
|
org_and_model='speakleash/Bielik-7B-v0.1' |
|
elif org_and_model=='speakleash/mistral_7B-v2/spkl-only_sft_v2/e1_base/spkl-only_v10wa_7e6-e2_bbc67e89': |
|
org_and_model='speakleash/Bielik-7B-Instruct-v0.1' |
|
|
|
if chat_template: |
|
org_and_model += ",chat" |
|
if fewshot_as_multiturn: |
|
org_and_model += ",multiturn" |
|
|
|
org_and_model = org_and_model.split("/", 1) |
|
|
|
if len(org_and_model) == 1: |
|
org = None |
|
model = org_and_model[0] |
|
result_key = f"{model}" |
|
else: |
|
org = org_and_model[0] |
|
model = org_and_model[1] |
|
result_key = f"{org}_{model}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
full_model = "/".join(org_and_model) |
|
|
|
still_on_hub, err, model_config = is_model_on_hub( |
|
full_model.split(',')[0], config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False |
|
) |
|
|
|
if err: |
|
print(full_model, err) |
|
|
|
architecture = "?" |
|
if model_config is not None: |
|
architectures = getattr(model_config, "architectures", None) |
|
if architectures: |
|
architecture = ";".join(architectures) |
|
|
|
|
|
results = {} |
|
for task in Tasks: |
|
task = task.value |
|
|
|
task_n_shot_num = n_shot_num |
|
if 'perplexity' in task.metric or task.benchmark=='polish_eq_bench': |
|
task_n_shot_num = 0 |
|
|
|
|
|
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if |
|
task.benchmark == k and n_shot.get(k, -1) == task_n_shot_num]) |
|
if accs.size == 0 or any([acc is None for acc in accs]): |
|
continue |
|
|
|
if 'perplexity' in task.metric or 'eqbench' in task.metric: |
|
mean_acc = np.mean(accs) |
|
else: |
|
mean_acc = np.mean(accs) * 100.0 |
|
results[task.benchmark] = (mean_acc, start_date) |
|
|
|
|
|
return self( |
|
eval_name=result_key, |
|
full_model=full_model, |
|
org=org, |
|
model=model, |
|
results=results, |
|
precision=precision, |
|
revision=config.get("model_sha", ""), |
|
still_on_hub=still_on_hub, |
|
architecture=architecture, |
|
n_shot=NShotType.from_str(n_shot_num), |
|
org_and_model=orig_org_and_model, |
|
start_date=start_date |
|
) |
|
|
|
def update_with_metadata(self, metadata): |
|
|
|
try: |
|
k = self.full_model.replace(',chat', '').replace(',multiturn', '') |
|
meta = metadata[k] |
|
self.model_type = ModelType.from_str(meta.get("type", "?")) |
|
self.num_params = meta.get("params", 0) |
|
self.license = meta.get("license", "?") |
|
self.lang = meta.get("lang", "?") |
|
|
|
except KeyError: |
|
print(f"Could not find metadata for {self.full_model}") |
|
|
|
def update_with_request_file(self, requests_path): |
|
"""Finds the relevant request file for the current model and updates info with it""" |
|
return |
|
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name) |
|
|
|
try: |
|
with open(request_file, "r") as f: |
|
request = json.load(f) |
|
self.model_type = ModelType.from_str(request.get("model_type", "")) |
|
self.weight_type = WeightType[request.get("weight_type", "Original")] |
|
self.license = request.get("license", "?") |
|
self.likes = request.get("likes", 0) |
|
self.num_params = request.get("params", 0) |
|
self.date = request.get("submitted_time", "") |
|
except Exception: |
|
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}") |
|
|
|
def to_dict(self): |
|
"""Converts the Eval Result to a dict compatible with our dataframe display""" |
|
|
|
|
|
|
|
|
|
all_tasks_wo_polqa = [task for task in all_tasks if 'polqa' not in task] |
|
|
|
baselines = {task.value.benchmark: task.value.baseline*100 for task in Tasks} |
|
|
|
average_old = sum([v for task, v in self.results.items() if v is not None and task in all_tasks_wo_polqa]) / len(all_tasks_wo_polqa) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
average = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in all_tasks]) / len(all_tasks) |
|
average_g = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in g_tasks]) / len(g_tasks) |
|
average_mc = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in mc_tasks]) / len(mc_tasks) |
|
average_rag = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in rag_tasks]) / len(rag_tasks) |
|
|
|
data_dict = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
data_dict["eval_name"] = self.eval_name |
|
except KeyError: |
|
print(f"Could not find eval name") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.precision.name] = self.precision.value.name |
|
except KeyError: |
|
print(f"Could not find precision") |
|
except AttributeError: |
|
print(f"AttributeError precision") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.model_type.name] = self.model_type.value.name |
|
except KeyError: |
|
print(f"Could not find model type") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.model_type_symbol.name] = self.model_type.value.symbol |
|
except KeyError: |
|
print(f"Could not find model type symbol") |
|
except AttributeError: |
|
print(f"AttributeError model_type") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.weight_type.name] = self.weight_type.value.name |
|
except KeyError: |
|
print(f"Could not find weight type") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.architecture.name] = self.architecture |
|
except KeyError: |
|
print(f"Could not find architecture") |
|
except AttributeError: |
|
print(f"AttributeError architecture") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.model.name] = make_clickable_model( |
|
self.full_model) if self.still_on_hub else self.full_model |
|
except KeyError: |
|
print(f"Could not find model") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.dummy.name] = self.full_model |
|
except KeyError: |
|
print(f"Could not find dummy") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.revision.name] = self.revision |
|
except KeyError: |
|
print(f"Could not find revision") |
|
except AttributeError: |
|
print(f"AttributeError revision") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.average_old.name] = average_old |
|
except KeyError: |
|
print(f"Could not find average_old") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.average.name] = average |
|
except KeyError: |
|
print(f"Could not find average") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.average_g.name] = average_g |
|
except KeyError: |
|
print(f"Could not find average_g") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.average_mc.name] = average_mc |
|
except KeyError: |
|
print(f"Could not find average_mc") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.average_rag.name] = average_rag |
|
except KeyError: |
|
print(f"Could not find average_rag") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.license.name] = self.license |
|
except KeyError: |
|
print(f"Could not find license") |
|
except AttributeError: |
|
print(f"AttributeError license") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.lang.name] = self.lang |
|
except KeyError: |
|
print(f"Could not find lang") |
|
except AttributeError: |
|
print(f"AttributeError lang") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.likes.name] = self.likes |
|
except KeyError: |
|
print(f"Could not find likes") |
|
except AttributeError: |
|
print(f"AttributeError likes") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.params.name] = self.num_params |
|
except KeyError: |
|
print(f"Could not find params") |
|
except AttributeError: |
|
print(f"AttributeError params") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.still_on_hub.name] = self.still_on_hub |
|
except KeyError: |
|
print(f"Could not find still on hub") |
|
except AttributeError: |
|
print(f"AttributeError stillonhub") |
|
|
|
try: |
|
data_dict[AutoEvalColumn.n_shot.name] = self.n_shot.value.name |
|
except KeyError: |
|
print(f"Could not find still on hub") |
|
|
|
for task in Tasks: |
|
try: |
|
data_dict[task.value.col_name] = self.results[task.value.benchmark] |
|
except KeyError: |
|
print(f"Could not find {task.value.col_name}") |
|
data_dict[task.value.col_name] = None |
|
|
|
return data_dict |
|
|
|
|
|
def get_request_file_for_model(requests_path, model_name, precision): |
|
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" |
|
request_files = os.path.join( |
|
requests_path, |
|
f"{model_name}_eval_request_*.json", |
|
) |
|
request_files = glob.glob(request_files) |
|
|
|
|
|
request_file = "" |
|
request_files = sorted(request_files, reverse=True) |
|
for tmp_request_file in request_files: |
|
with open(tmp_request_file, "r") as f: |
|
req_content = json.load(f) |
|
if ( |
|
req_content["status"] in ["FINISHED"] |
|
and req_content["precision"] == precision.split(".")[-1] |
|
): |
|
request_file = tmp_request_file |
|
return request_file |
|
|
|
|
|
def get_raw_eval_results(results_path: str, requests_path: str, metadata) -> list[EvalResult]: |
|
"""From the path of the results folder root, extract all needed info for results""" |
|
model_result_filepaths = [] |
|
|
|
for root, _, files in os.walk(results_path): |
|
|
|
if len(files) == 0 or any([not f.endswith(".json") for f in files]): |
|
continue |
|
|
|
|
|
try: |
|
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) |
|
except dateutil.parser._parser.ParserError: |
|
files = [files[-1]] |
|
|
|
for file in files: |
|
model_result_filepaths.append(os.path.join(root, file)) |
|
|
|
|
|
|
|
eval_results = {} |
|
for n_shot in [0, 5]: |
|
for model_result_filepath in model_result_filepaths: |
|
|
|
eval_result = EvalResult.init_from_json_file(model_result_filepath, n_shot_num=n_shot) |
|
eval_result.update_with_request_file(requests_path) |
|
|
|
eval_result.update_with_metadata(metadata) |
|
|
|
|
|
eval_name = f"{eval_result.eval_name}_{n_shot}-shot" |
|
if eval_name in eval_results.keys(): |
|
|
|
for k, (v, start_date) in eval_result.results.items(): |
|
if v is not None: |
|
if k in eval_results[eval_name].results: |
|
if start_date > eval_results[eval_name].results[k][1]: |
|
print( |
|
f"Overwriting {eval_name}.results {k} {eval_results[eval_name].results[k]} with {v}: {model_result_filepath} {n_shot} {eval_result.start_date} {eval_results[eval_name].start_date}") |
|
eval_results[eval_name].results[k] = (v, start_date) |
|
else: |
|
print( |
|
f"Skipping {eval_name} {eval_result.start_date} {eval_results[eval_name].start_date}: {model_result_filepath} {n_shot}") |
|
else: |
|
eval_results[eval_name].results[k] = (v, start_date) |
|
|
|
|
|
|
|
else: |
|
eval_results[eval_name] = eval_result |
|
|
|
for k,v in eval_results.items(): |
|
v.results = {k: v for k, (v, start_date) in v.results.items()} |
|
|
|
results = [] |
|
for v in eval_results.values(): |
|
try: |
|
print(v) |
|
v.to_dict() |
|
|
|
results.append(v) |
|
except KeyError: |
|
print(f"not all eval values present {v.eval_name} {v.full_model}") |
|
continue |
|
|
|
all_models = [] |
|
missing_results_for_task = {} |
|
missing_metadata = [] |
|
for v in eval_results.values(): |
|
r = v.to_dict() |
|
for task in Tasks: |
|
if r[task.value.col_name] is None: |
|
task_name = f"{r['n_shot']}|{task.value.benchmark}" |
|
if task_name in missing_results_for_task: |
|
missing_results_for_task[task_name].append(f"{v.full_model}|{v.org_and_model}") |
|
else: |
|
missing_results_for_task[task_name] = [f"{v.full_model}|{v.org_and_model}"] |
|
if r[AutoEvalColumn.lang.name] is None or r[AutoEvalColumn.lang.name] == "?": |
|
missing_metadata.append(f"{v.full_model}") |
|
all_models.append((v.full_model, v.num_params, v.still_on_hub)) |
|
|
|
|
|
for task, models in missing_results_for_task.items(): |
|
print(f"Missing results for {task} for {len(models)} models") |
|
|
|
for model in models: |
|
print(f'"{model}"') |
|
print() |
|
|
|
print(f"Missing metadata for {len(missing_metadata)} models") |
|
for model in missing_metadata: |
|
print(model) |
|
print() |
|
|
|
print(f"All models:") |
|
for model in all_models: |
|
print(model) |
|
print() |
|
|
|
return results |
|
|