|
import subprocess |
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import snapshot_download |
|
from pandas.io.formats.style import Styler |
|
|
|
from src.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
TITLE, Tasks, |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
NUMERIC_INTERVALS, |
|
TYPES, |
|
AutoEvalColumn, |
|
ModelType, |
|
fields, |
|
WeightType, |
|
Precision, |
|
NShotType, |
|
) |
|
from src.envs import API, DEVICE, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
|
|
|
|
|
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID) |
|
|
|
def launch_backend(): |
|
_ = subprocess.run(["python", "main_backend.py"]) |
|
|
|
try: |
|
|
|
snapshot_download( |
|
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
) |
|
except Exception: |
|
restart_space() |
|
try: |
|
|
|
snapshot_download( |
|
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
) |
|
except Exception: |
|
restart_space() |
|
|
|
|
|
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) |
|
leaderboard_df = original_df.copy() |
|
leaderboard_df = leaderboard_df[leaderboard_df[AutoEvalColumn.still_on_hub.name] == True] |
|
|
|
|
|
original_df.to_csv("output.csv") |
|
|
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
|
|
def style_df(df: pd.DataFrame) -> Styler: |
|
|
|
|
|
|
|
|
|
leaderboard_df_styled = df.style.background_gradient(cmap="RdYlGn") |
|
|
|
inverted_colors_columns = ['rank'] |
|
|
|
|
|
if '#Params (B)' in df.columns: |
|
inverted_colors_columns.append("#Params (B)") |
|
|
|
leaderboard_df_styled = leaderboard_df_styled.background_gradient(cmap="RdYlGn_r", subset=inverted_colors_columns) |
|
rounding = {'#Params (B)': "{:.1f}", 'rank': "{:.0f}"} |
|
for task in Tasks: |
|
rounding[task.value.col_name] = "{:.2f}" |
|
for column_name in ["Average β¬οΈ"]: |
|
rounding[column_name] = "{:.2f}" |
|
leaderboard_df_styled = leaderboard_df_styled.format(rounding) |
|
return leaderboard_df_styled |
|
|
|
|
|
def update_table( |
|
hidden_df: pd.DataFrame, |
|
columns: list, |
|
type_query: list, |
|
precision_query: str, |
|
size_query: list, |
|
nshot_query: list, |
|
show_deleted: bool, |
|
query: str, |
|
): |
|
|
|
filtered_df = filter_models(hidden_df, type_query, size_query, nshot_query, precision_query, show_deleted) |
|
|
|
filtered_df = filter_queries(query, filtered_df) |
|
|
|
df = select_columns(filtered_df, columns) |
|
|
|
df = df.replace({'': np.nan}) |
|
|
|
return style_df(df) |
|
|
|
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: |
|
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] |
|
|
|
|
|
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: |
|
always_here_cols = [ |
|
AutoEvalColumn.rank.name, |
|
AutoEvalColumn.model_type_symbol.name, |
|
AutoEvalColumn.model.name, |
|
] |
|
|
|
filtered_df = df[ |
|
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name] |
|
] |
|
return filtered_df |
|
|
|
|
|
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: |
|
final_df = [] |
|
if query != "": |
|
queries = [q.strip() for q in query.split(";")] |
|
for _q in queries: |
|
_q = _q.strip() |
|
if _q != "": |
|
temp_filtered_df = search_table(filtered_df, _q) |
|
if len(temp_filtered_df) > 0: |
|
final_df.append(temp_filtered_df) |
|
if len(final_df) > 0: |
|
filtered_df = pd.concat(final_df) |
|
filtered_df = filtered_df.drop_duplicates( |
|
subset=[AutoEvalColumn.model.name, AutoEvalColumn.n_shot.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] |
|
) |
|
|
|
return filtered_df |
|
|
|
|
|
def filter_models( |
|
df: pd.DataFrame, type_query: list, size_query: list, nshot_query: list, precision_query: list, show_deleted: bool |
|
) -> pd.DataFrame: |
|
|
|
if show_deleted: |
|
filtered_df = df |
|
else: |
|
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] |
|
|
|
type_emoji = [t[0] for t in type_query] |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] |
|
|
|
|
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.n_shot.name].isin(nshot_query + ["None"])] |
|
|
|
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) |
|
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") |
|
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) |
|
filtered_df = filtered_df.loc[mask] |
|
|
|
return filtered_df |
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", |
|
show_label=False, |
|
elem_id="search-bar", |
|
) |
|
|
|
filter_columns_type = gr.CheckboxGroup( |
|
label="Model types", |
|
choices=[t.to_str() for t in ModelType], |
|
value=[t.to_str() for t in ModelType], |
|
interactive=True, |
|
elem_id="filter-columns-type", |
|
visible=True, |
|
) |
|
filter_columns_precision = gr.CheckboxGroup( |
|
label="Precision", |
|
choices=[i.value.name for i in Precision], |
|
value=[i.value.name for i in Precision], |
|
interactive=True, |
|
elem_id="filter-columns-precision", |
|
visible=False, |
|
) |
|
filter_columns_size = gr.CheckboxGroup( |
|
label="Model sizes (in billions of parameters)", |
|
choices=list(NUMERIC_INTERVALS.keys()), |
|
value=list(NUMERIC_INTERVALS.keys()), |
|
interactive=True, |
|
elem_id="filter-columns-size", |
|
visible=True, |
|
) |
|
filter_columns_nshot = gr.CheckboxGroup( |
|
label="N-shot", |
|
choices=[i.value.name for i in NShotType], |
|
value=[i.value.name for i in NShotType], |
|
interactive=True, |
|
elem_id="filter-columns-nshot", |
|
) |
|
with gr.Row(): |
|
deleted_models_visibility = gr.Checkbox( |
|
value=False, label="Show private/deleted models", interactive=True |
|
) |
|
with gr.Column(min_width=320): |
|
with gr.Row(): |
|
shown_columns = gr.CheckboxGroup( |
|
choices=[ |
|
c.name |
|
for c in fields(AutoEvalColumn) |
|
if not c.hidden and not c.never_hidden and not c.dummy |
|
], |
|
value=[ |
|
c.name |
|
for c in fields(AutoEvalColumn) |
|
if c.displayed_by_default and not c.hidden and not c.never_hidden |
|
], |
|
label="Select columns to show", |
|
elem_id="column-select", |
|
interactive=True, |
|
) |
|
|
|
|
|
leaderboard_table_value=leaderboard_df[ |
|
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] |
|
+ shown_columns.value |
|
+ [AutoEvalColumn.dummy.name] |
|
] |
|
leaderboard_df_styled=style_df(leaderboard_table_value) |
|
|
|
|
|
leaderboard_df_styled.precision = 2 |
|
|
|
leaderboard_table = gr.components.Dataframe( |
|
value=leaderboard_df_styled, |
|
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, |
|
datatype=TYPES, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
visible=True, |
|
|
|
height=800 |
|
) |
|
|
|
|
|
hidden_leaderboard_table_for_search = gr.components.Dataframe( |
|
value=original_df[COLS], |
|
headers=COLS, |
|
datatype=TYPES, |
|
visible=False, |
|
) |
|
search_bar.submit( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
filter_columns_nshot, |
|
deleted_models_visibility, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
) |
|
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_nshot, deleted_models_visibility]: |
|
selector.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
filter_columns_nshot, |
|
deleted_models_visibility, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
queue=True, |
|
) |
|
|
|
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): |
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Column(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
csv = gr.File(interactive=False, value="output.csv", visible=False) |
|
json = gr.File(interactive=False, value="all_data.json", visible=False) |
|
|
|
|
|
|
|
def update_visibility(radio): |
|
return gr.File(interactive=False, value="output.csv", visible=True) |
|
def update_visibility_json(radio): |
|
return gr.File(interactive=False, value="all_data.json", visible=True) |
|
|
|
deleted_models_visibility.change(update_visibility, deleted_models_visibility, csv) |
|
deleted_models_visibility.change(update_visibility_json, deleted_models_visibility, json) |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=1800) |
|
|
|
scheduler.start() |
|
demo.queue(default_concurrency_limit=40).launch() |