Spaces:
Restarting
Restarting
import glob | |
import json | |
import os | |
import re | |
import pickle | |
from typing import List | |
import huggingface_hub | |
from huggingface_hub import HfApi | |
from tqdm import tqdm | |
from transformers import AutoModel, AutoConfig | |
from accelerate import init_empty_weights | |
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS | |
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str | |
from src.display_models.utils import AutoEvalColumn, model_hyperlink | |
api = HfApi(token=os.environ.get("H4_TOKEN", None)) | |
def get_model_infos_from_hub(leaderboard_data: List[dict]): | |
# load cache from disk | |
try: | |
with open("model_info_cache.pkl", "rb") as f: | |
model_info_cache = pickle.load(f) | |
except (EOFError, FileNotFoundError): | |
model_info_cache = {} | |
try: | |
with open("model_size_cache.pkl", "rb") as f: | |
model_size_cache = pickle.load(f) | |
except (EOFError, FileNotFoundError): | |
model_size_cache = {} | |
for model_data in tqdm(leaderboard_data): | |
model_name = model_data["model_name_for_query"] | |
if model_name in model_info_cache: | |
model_info = model_info_cache[model_name] | |
else: | |
try: | |
model_info = api.model_info(model_name) | |
model_info_cache[model_name] = model_info | |
except huggingface_hub.utils._errors.RepositoryNotFoundError: | |
print("Repo not found!", model_name) | |
model_data[AutoEvalColumn.license.name] = None | |
model_data[AutoEvalColumn.likes.name] = None | |
if model_name not in model_size_cache: | |
model_size_cache[model_name] = get_model_size(model_name, None) | |
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name] | |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info) | |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info) | |
if model_name not in model_size_cache: | |
model_size_cache[model_name] = get_model_size(model_name, model_info) | |
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name] | |
# save cache to disk in pickle format | |
with open("model_info_cache.pkl", "wb") as f: | |
pickle.dump(model_info_cache, f) | |
with open("model_size_cache.pkl", "wb") as f: | |
pickle.dump(model_size_cache, f) | |
def get_model_license(model_info): | |
try: | |
return model_info.cardData["license"] | |
except Exception: | |
return "?" | |
def get_model_likes(model_info): | |
return model_info.likes | |
size_pattern = re.compile(r"(\d\.)?\d+(b|m)") | |
def get_model_size(model_name, model_info): | |
# In billions | |
try: | |
return round(model_info.safetensors["total"] / 1e9, 3) | |
except AttributeError: | |
try: | |
config = AutoConfig.from_pretrained(model_name, trust_remote_code=False) | |
with init_empty_weights(): | |
model = AutoModel.from_config(config, trust_remote_code=False) | |
return round(sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e9, 3) | |
except (EnvironmentError, ValueError, KeyError): # model config not found, likely private | |
try: | |
size_match = re.search(size_pattern, model_name.lower()) | |
size = size_match.group(0) | |
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3) | |
except AttributeError: | |
return 0 | |
def get_model_type(leaderboard_data: List[dict]): | |
for model_data in leaderboard_data: | |
request_files = os.path.join( | |
"eval-queue", | |
model_data["model_name_for_query"] + "_eval_request_*" + ".json", | |
) | |
request_files = glob.glob(request_files) | |
# Select correct request file (precision) | |
request_file = "" | |
if len(request_files) == 1: | |
request_file = request_files[0] | |
elif len(request_files) > 1: | |
request_files = sorted(request_files, reverse=True) | |
for tmp_request_file in request_files: | |
with open(tmp_request_file, "r") as f: | |
req_content = json.load(f) | |
if ( | |
req_content["status"] == "FINISHED" | |
and req_content["precision"] == model_data["Precision"].split(".")[-1] | |
): | |
request_file = tmp_request_file | |
try: | |
with open(request_file, "r") as f: | |
request = json.load(f) | |
model_type = model_type_from_str(request["model_type"]) | |
model_data[AutoEvalColumn.model_type.name] = model_type.value.name | |
model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol # + ("🔺" if is_delta else "") | |
except Exception: | |
if model_data["model_name_for_query"] in MODEL_TYPE_METADATA: | |
model_data[AutoEvalColumn.model_type.name] = MODEL_TYPE_METADATA[ | |
model_data["model_name_for_query"] | |
].value.name | |
model_data[AutoEvalColumn.model_type_symbol.name] = MODEL_TYPE_METADATA[ | |
model_data["model_name_for_query"] | |
].value.symbol # + ("🔺" if is_delta else "") | |
else: | |
model_data[AutoEvalColumn.model_type.name] = ModelType.Unknown.value.name | |
model_data[AutoEvalColumn.model_type_symbol.name] = ModelType.Unknown.value.symbol | |
def flag_models(leaderboard_data: List[dict]): | |
for model_data in leaderboard_data: | |
if model_data["model_name_for_query"] in FLAGGED_MODELS: | |
issue_num = FLAGGED_MODELS[model_data["model_name_for_query"]].split("/")[-1] | |
issue_link = model_hyperlink( | |
FLAGGED_MODELS[model_data["model_name_for_query"]], | |
f"See discussion #{issue_num}", | |
) | |
model_data[ | |
AutoEvalColumn.model.name | |
] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}" | |
def remove_forbidden_models(leaderboard_data: List[dict]): | |
indices_to_remove = [] | |
for ix, model in enumerate(leaderboard_data): | |
if model["model_name_for_query"] in DO_NOT_SUBMIT_MODELS: | |
indices_to_remove.append(ix) | |
for ix in reversed(indices_to_remove): | |
leaderboard_data.pop(ix) | |
return leaderboard_data | |
def apply_metadata(leaderboard_data: List[dict]): | |
leaderboard_data = remove_forbidden_models(leaderboard_data) | |
get_model_type(leaderboard_data) | |
get_model_infos_from_hub(leaderboard_data) | |
flag_models(leaderboard_data) | |