File size: 6,694 Bytes
9d22eee
2a5f9fb
 
df66f6e
 
1ffc326
efeee6d
9d22eee
 
 
314f91a
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
efeee6d
9d22eee
 
 
 
0d2a785
d2d2329
bc4548b
9d22eee
 
96fbe7c
ed33da8
 
c7cf816
ad6c108
9d22eee
 
 
ad6c108
918265b
9d22eee
 
 
 
bc4548b
9d22eee
 
 
 
 
 
 
 
2a5f9fb
efeee6d
2a5f9fb
 
 
 
 
 
 
 
 
efeee6d
2a5f9fb
9d22eee
2a5f9fb
9833cdb
 
2a5f9fb
 
 
9d22eee
ed33da8
9d22eee
ed33da8
918265b
9d22eee
2a5f9fb
 
 
 
 
 
ed33da8
 
2a5f9fb
 
ed33da8
2a5f9fb
 
 
918265b
68bbe4a
2a5f9fb
 
9d22eee
 
 
 
 
1d87935
 
 
 
d2d2329
 
 
 
 
 
 
 
9d22eee
 
 
55cc480
b899767
 
 
9d22eee
 
 
 
 
 
 
55cc480
 
b899767
 
 
 
 
 
9d22eee
2a5f9fb
 
 
 
 
 
 
 
 
 
b1a1395
2a5f9fb
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks

def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False
    dummy: bool = False

## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["lang", ColumnContent, ColumnContent("Lang", "str", True)])
auto_eval_column_dict.append(["n_shot", ColumnContent, ColumnContent("n_shot", "str", True)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
auto_eval_column_dict.append(["average_old", ColumnContent, ColumnContent("Average old", "number", False)])
auto_eval_column_dict.append(["average_g", ColumnContent, ColumnContent("Avg g", "number", True)])
auto_eval_column_dict.append(["average_mc", ColumnContent, ColumnContent("Avg mc", "number", True)])
auto_eval_column_dict.append(["average_rag", ColumnContent, ColumnContent("Avg RAG", "number", True)])

for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information

auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])

auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)

## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)

## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji


class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟒")
    CPT = ModelDetails(name="continuously pretrained", symbol="🟩")
    IFT = ModelDetails(name="instruction-tuned", symbol="β­•")
    RL = ModelDetails(name="RL-tuned", symbol="πŸ’¬")
    Baseline = ModelDetails(name="baseline", symbol="βš–")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "continuously pretrained" in type or "🟩" in type:
            return ModelType.CPT
        if "pretrained" in type or "🟒" in type:
            return ModelType.PT
        if "RL-tuned" in type or "πŸ’¬" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "β­•" in type:
            return ModelType.IFT
        if "baseline" in type or "βš–" in type:
            return ModelType.Baseline
        return ModelType.Unknown

class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")

class NShotType(Enum):
    n0 = ModelDetails("0")
    n5 = ModelDetails("5")

    @staticmethod
    def from_str(n):
        if n in ["0", 0]:
            return NShotType.n0
        if n in ["5", 5]:
            return NShotType.n5
        return NShotType.Unknown

class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    float32 = ModelDetails("float32")
    #qt_8bit = ModelDetails("8bit")
    #qt_4bit = ModelDetails("4bit")
    #qt_GPTQ = ModelDetails("GPTQ")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        if precision in ["float32"]:
            return Precision.float32
        #if precision in ["8bit"]:
        #    return Precision.qt_8bit
        #if precision in ["4bit"]:
        #    return Precision.qt_4bit
        #if precision in ["GPTQ", "None"]:
        #    return Precision.qt_GPTQ
        return Precision.Unknown

# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]

NUMERIC_INTERVALS = {
    "?": pd.Interval(-1, 0, closed="right"),
    "~1.5": pd.Interval(0, 2, closed="right"),
    "~3": pd.Interval(2, 4, closed="right"),
    "~7": pd.Interval(4, 9, closed="right"),
    "~13": pd.Interval(9, 20, closed="right"),
    "~35": pd.Interval(20, 45, closed="right"),
    "~60": pd.Interval(45, 70, closed="right"),
    "70+": pd.Interval(70, 10000, closed="right"),
}