Spaces:
Runtime error
Runtime error
import torch | |
import torchaudio | |
from einops import rearrange | |
import gradio as gr | |
import spaces | |
import os | |
import uuid | |
import shutil | |
import gzip | |
import io | |
# Importing the model-related functions | |
from stable_audio_tools import get_pretrained_model | |
from stable_audio_tools.inference.generation import generate_diffusion_cond | |
# Load the model outside of the GPU-decorated function | |
def load_model(): | |
print("Loading model...") | |
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0") | |
print("Model loaded successfully.") | |
return model, model_config | |
def compress_file(file_path): | |
compressed_file_path = file_path + '.gz' | |
with open(file_path, 'rb') as f_in: | |
with gzip.open(compressed_file_path, 'wb') as f_out: | |
shutil.copyfileobj(f_in, f_out) | |
return compressed_file_path | |
# Function to set up, generate, and process the audio | |
# Allocate GPU only when this function is called | |
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7): | |
print(f"Prompt received: {prompt}") | |
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
# Fetch the Hugging Face token from the environment variable | |
hf_token = os.getenv('HF_TOKEN') | |
print(f"Hugging Face token: {hf_token}") | |
# Use pre-loaded model and configuration | |
model, model_config = load_model() | |
sample_rate = model_config["sample_rate"] | |
sample_size = model_config["sample_size"] | |
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}") | |
model = model.to(device) | |
print("Model moved to device.") | |
# Set up text and timing conditioning | |
conditioning = [{ | |
"prompt": prompt, | |
"seconds_start": 0, | |
"seconds_total": seconds_total | |
}] | |
print(f"Conditioning: {conditioning}") | |
# Generate stereo audio | |
print("Generating audio...") | |
output = generate_diffusion_cond( | |
model, | |
steps=steps, | |
cfg_scale=cfg_scale, | |
conditioning=conditioning, | |
sample_size=sample_size, | |
sigma_min=0.3, | |
sigma_max=500, | |
sampler_type="dpmpp-3m-sde", | |
device=device | |
) | |
print("Audio generated.") | |
# Rearrange audio batch to a single sequence | |
output = rearrange(output, "b d n -> d (b n)") | |
print("Audio rearranged.") | |
# Peak normalize, clip, convert to int16 | |
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() | |
print("Audio normalized and converted.") | |
# # Generate a unique filename for the output | |
unique_filename = f"output_{uuid.uuid4().hex}.wav" | |
print(f"Saving audio to file: {unique_filename}") | |
# # Save to file | |
torchaudio.save(unique_filename, output, sample_rate) | |
print(f"Audio saved: {unique_filename}") | |
# compressed_filename = compress_file(unique_filename) | |
# return compressed_filename | |
# # Return the path to the generated audio file | |
return unique_filename | |
# Convert audio tensor to bytes | |
# byte_io = io.BytesIO() | |
# torchaudio.save(byte_io, output, sample_rate, format="wav") | |
# byte_io.seek(0) | |
# audio_bytes = byte_io.read() | |
# print("Audio converted to bytes.") | |
# return audio_bytes | |
DESCRIPTION = "Welcome to Raptor APIs" | |
css = """ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab(label="GenAudio"): | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here") | |
duration = gr.Slider(0, 47, value=30, label="Duration in Seconds") | |
steps = gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps") | |
cfg = gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale") | |
btn = gr.Button(value="generate") | |
with gr.Column(): | |
output = gr.Audio(label="audio") | |
# output_byte_code = gr.Textbox(label="Byte Code Output") | |
btn.click(generate_audio,inputs=[prompt,duration, steps, cfg],outputs=output,api_name="genAudio") | |
# Pre-load the model to avoid multiprocessing issues | |
model, model_config = load_model() | |
# Launch the Interface | |
demo.launch() | |