spdraptor's picture
Update app.py
d2b1aff verified
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
import shutil
import gzip
import io
# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
# Load the model outside of the GPU-decorated function
def load_model():
print("Loading model...")
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
print("Model loaded successfully.")
return model, model_config
def compress_file(file_path):
compressed_file_path = file_path + '.gz'
with open(file_path, 'rb') as f_in:
with gzip.open(compressed_file_path, 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
return compressed_file_path
# Function to set up, generate, and process the audio
@spaces.GPU(duration=25) # Allocate GPU only when this function is called
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
print(f"Prompt received: {prompt}")
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Fetch the Hugging Face token from the environment variable
hf_token = os.getenv('HF_TOKEN')
print(f"Hugging Face token: {hf_token}")
# Use pre-loaded model and configuration
model, model_config = load_model()
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
model = model.to(device)
print("Model moved to device.")
# Set up text and timing conditioning
conditioning = [{
"prompt": prompt,
"seconds_start": 0,
"seconds_total": seconds_total
}]
print(f"Conditioning: {conditioning}")
# Generate stereo audio
print("Generating audio...")
output = generate_diffusion_cond(
model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=0.3,
sigma_max=500,
sampler_type="dpmpp-3m-sde",
device=device
)
print("Audio generated.")
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
print("Audio rearranged.")
# Peak normalize, clip, convert to int16
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
print("Audio normalized and converted.")
# # Generate a unique filename for the output
unique_filename = f"output_{uuid.uuid4().hex}.wav"
print(f"Saving audio to file: {unique_filename}")
# # Save to file
torchaudio.save(unique_filename, output, sample_rate)
print(f"Audio saved: {unique_filename}")
# compressed_filename = compress_file(unique_filename)
# return compressed_filename
# # Return the path to the generated audio file
return unique_filename
# Convert audio tensor to bytes
# byte_io = io.BytesIO()
# torchaudio.save(byte_io, output, sample_rate, format="wav")
# byte_io.seek(0)
# audio_bytes = byte_io.read()
# print("Audio converted to bytes.")
# return audio_bytes
DESCRIPTION = "Welcome to Raptor APIs"
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="GenAudio"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
duration = gr.Slider(0, 47, value=30, label="Duration in Seconds")
steps = gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps")
cfg = gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
btn = gr.Button(value="generate")
with gr.Column():
output = gr.Audio(label="audio")
# output_byte_code = gr.Textbox(label="Byte Code Output")
btn.click(generate_audio,inputs=[prompt,duration, steps, cfg],outputs=output,api_name="genAudio")
# Pre-load the model to avoid multiprocessing issues
model, model_config = load_model()
# Launch the Interface
demo.launch()