Spaces:
Sleeping
Sleeping
import gradio as gr | |
from datasets import load_from_disk | |
from pyserini.search.lucene import LuceneSearcher | |
from pyserini.analysis import JWhiteSpaceAnalyzer | |
from itertools import chain | |
from nltk.util import everygrams | |
searcher = LuceneSearcher("index") | |
searcher.set_analyzer(JWhiteSpaceAnalyzer()) | |
def tokenize_word(word, min_len=2, max_len=4): | |
return [''.join(ngram) for ngram in list(everygrams(word, min_len=min_len, max_len=max_len))] | |
def tokenize_sentence(sentence, min_len=2, max_len=4): | |
return " ".join(chain(*[tokenize_word(word, min_len=min_len, max_len=max_len) for word in sentence.split()])) | |
ds = load_from_disk("data") | |
NUM_PAGES = 10 # STATIC. THIS CAN'T CHANGE BECAUSE GRADIO CAN'T DYNAMICALLY CREATE COMPONENTS. | |
RESULTS_PER_PAGE = 5 | |
TEXT_FIELD = "content" | |
METADATA_FIELD = "docid" | |
def result_html(result, meta): | |
return ( | |
f"<div style=\"color:#2a5cb3;font-weight: 500\"><u>docid: {meta}</u></div><br>" | |
f"<div><details><summary>{result[:250]}...</summary><p>{result[250:]}</p></details></div><br><hr><br>" | |
) | |
def format_results(results, query): | |
text_content = results[TEXT_FIELD] | |
query_words = query.split() | |
for word in query_words: | |
text_content = [text.replace(word, f"<b style=\"color:#2a5cb3;font-weight: 700\">{word}</b>") for text in text_content] | |
return "\n".join([result_html(result, meta) for result,meta in zip(text_content, results[METADATA_FIELD])]) | |
def page_0(query): | |
untokenized_query = query | |
query = tokenize_sentence(query) | |
hits = searcher.search(query, k=NUM_PAGES*RESULTS_PER_PAGE) | |
ix = [int(hit.docid) for hit in hits] | |
results = ds.select(ix).shard(num_shards=NUM_PAGES, index=0, contiguous=True) | |
results = format_results(results, untokenized_query) | |
return results, [ix], gr.update(visible=True), untokenized_query | |
def page_i(i, ix, query): | |
ix = ix[0] | |
results = ds.select(ix).shard(num_shards=NUM_PAGES, index=i, contiguous=True) | |
results = format_results(results, query) | |
return results, [ix], query | |
with gr.Blocks(css="#b {min-width:15px;background:transparent;}") as demo: #border:white;box-shadow:none; | |
with gr.Row(): | |
gr.Markdown(value="""## <p style="text-align: center;"> Code search </p>""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
pass | |
with gr.Column(scale=15): | |
gr.Markdown("""<div style="text-align: justify"> This search tool was used to validate tokenization scheme for code retrieval for the BigCode project. We indexed the 🎅 <a href="https://huggingface.co/bigcode/santacoder">Santacoder</a> training dataset (Python, Java, and JavaScript) and use a (2,4)-gram tokenizer to build the index. This is the same tokenization scheme that ended up being used to power the ⭐ <a href="https://huggingface.co/spaces/bigcode/search">StarCoder search tool</a>.</div>""") | |
with gr.Column(scale=1): | |
pass | |
with gr.Row(): | |
with gr.Column(scale=1): | |
result_list = gr.Dataframe(type="array", visible=False, col_count=1) | |
with gr.Column(scale=15): | |
query = gr.Textbox(lines=1, max_lines=1, placeholder="Search…", label="Query") | |
with gr.Column(scale=1): | |
with gr.Row(scale=1): | |
pass | |
with gr.Row(scale=1): | |
submit_btn = gr.Button("🔍", elem_id="b").style(full_width=False) | |
with gr.Row(scale=1): | |
pass | |
with gr.Row(): | |
with gr.Column(scale=1): | |
pass | |
with gr.Column(scale=13): | |
c = gr.HTML(label="Results") | |
with gr.Row(visible=False) as pagination: | |
# left = gr.Button(value="◀", elem_id="b", visible=False).style(full_width=True) | |
page_1 = gr.Button(value="1", elem_id="b").style(full_width=True) | |
page_2 = gr.Button(value="2", elem_id="b").style(full_width=True) | |
page_3 = gr.Button(value="3", elem_id="b").style(full_width=True) | |
page_4 = gr.Button(value="4", elem_id="b").style(full_width=True) | |
page_5 = gr.Button(value="5", elem_id="b").style(full_width=True) | |
page_6 = gr.Button(value="6", elem_id="b").style(full_width=True) | |
page_7 = gr.Button(value="7", elem_id="b").style(full_width=True) | |
page_8 = gr.Button(value="8", elem_id="b").style(full_width=True) | |
page_9 = gr.Button(value="9", elem_id="b").style(full_width=True) | |
page_10 = gr.Button(value="10", elem_id="b").style(full_width=True) | |
# right = gr.Button(value="▶", elem_id="b", visible=False).style(full_width=True) | |
with gr.Column(scale=1): | |
pass | |
query.submit(fn=page_0, inputs=[query], outputs=[c, result_list, pagination, query]) | |
submit_btn.click(page_0, inputs=[query], outputs=[c, result_list, pagination, query]) | |
with gr.Box(visible=False): | |
nums = [gr.Number(i, visible=False, precision=0) for i in range(NUM_PAGES)] | |
page_1.click(fn=page_i, inputs=[nums[0], result_list, query], outputs=[c, result_list, query]) | |
page_2.click(fn=page_i, inputs=[nums[1], result_list, query], outputs=[c, result_list, query]) | |
page_3.click(fn=page_i, inputs=[nums[2], result_list, query], outputs=[c, result_list, query]) | |
page_4.click(fn=page_i, inputs=[nums[3], result_list, query], outputs=[c, result_list, query]) | |
page_5.click(fn=page_i, inputs=[nums[4], result_list, query], outputs=[c, result_list, query]) | |
page_6.click(fn=page_i, inputs=[nums[5], result_list, query], outputs=[c, result_list, query]) | |
page_7.click(fn=page_i, inputs=[nums[6], result_list, query], outputs=[c, result_list, query]) | |
page_8.click(fn=page_i, inputs=[nums[7], result_list, query], outputs=[c, result_list, query]) | |
page_9.click(fn=page_i, inputs=[nums[8], result_list, query], outputs=[c, result_list, query]) | |
page_10.click(fn=page_i, inputs=[nums[9], result_list, query], outputs=[c, result_list, query]) | |
demo.launch(enable_queue=True, debug=True) |