souvikmaji22's picture
Update app.py
09a22a3 verified
raw
history blame contribute delete
930 Bytes
import gradio as gr
from transformers import pipeline
import torch
import numpy as np
from PIL import Image
depth_estimator = pipeline(task="depth-estimation",
model="Intel/dpt-hybrid-midas")
if __name__ == "__main__":
def launch(input_image):
out = depth_estimator(input_image)
# resize the prediction
prediction = torch.nn.functional.interpolate(
out["predicted_depth"].unsqueeze(1),
size=input_image.size[::-1],
mode="bicubic",
align_corners=False,
)
# normalize the prediction
output = prediction.squeeze().numpy()
formatted = (output * 255 / np.max(output)).astype("uint8")
depth = Image.fromarray(formatted)
return depth
iface = gr.Interface(launch,
inputs=gr.Image(type='pil'),
outputs=gr.Image(type='pil'))
iface.launch()