my_api / app.py
souljoy's picture
Update app.py
cb7bb38
raw
history blame
7.03 kB
from fastapi import FastAPI, status
from fastapi.responses import HTMLResponse
from pydantic import BaseModel
from fastapi.responses import JSONResponse, StreamingResponse
import requests
import json
import openai
import time
class Text(BaseModel):
content: str = ""
app = FastAPI()
key = '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'
openai.api_key = key
headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + key
}
@app.get("/")
def home():
html_content = open('index.html').read()
return HTMLResponse(content=html_content, status_code=200)
@app.post("/qa_maker")
def sentiment_analysis_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
prompt = '根据下面的文章,生成的“问题和回答”QA对,大于5个,以一行一个json格式({“question”:"xxx","answer":"xxx"})生成:\n'
messages = [{"role": "user", "content": prompt + content.content}]
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
print('res:', res)
res = {'content': res}
return JSONResponse(content=res)
@app.post("/chatpdf")
def chat_pdf_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
messages = [
{
"role": "system",
"content": "你是一个有用的助手,可以使用文章内容准确地回答问题。使用提供的文章来生成你的答案,但避免逐字复制文章。尽可能使用自己的话。准确、有用、简洁、清晰。"
}
]
obj = json.loads(content.content)
messages.append({"role": "system", "content": "文章内容:\n" + obj['doc']})
history = obj['history']
for his in history:
messages.append({"role": "user", "content": his[0]})
messages.append({"role": "assistant", "content": his[1]})
messages.append({"role": "user", "content": obj['question']})
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
content = {'content': res}
print('content:', content)
return JSONResponse(content=content)
@app.post("/sale")
def sale_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
messages = [
{
"role": "system",
"content": "你是小鹏汽车资深的销售,可以参考文章内容来生成你的答案,但避免逐字复制文章,尽可能使用自己的话,突出小鹏汽车的优点、说服用户来店试驾或购买小鹏汽车。准确、有用、有销售技巧、口语化、有亲和力。"
}
]
obj = json.loads(content.content)
messages.append({"role": "system", "content": "文章内容:\n" + obj['doc']})
history = obj['history']
for his in history:
messages.append({"role": "user", "content": his[0]})
messages.append({"role": "assistant", "content": his[1]})
messages.append({"role": "user", "content": obj['question']})
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
content = {'content': res}
print('content:', content)
return JSONResponse(content=content)
@app.post("/chatgpt")
def chat_gpt_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
obj = json.loads(content.content)
data = {
"model": "gpt-3.5-turbo",
"messages": obj['messages']
}
print("data = \n", data)
key = obj['key']
openai.api_key = key
headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + key
}
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
content = {'content': res}
print('content:', content)
return JSONResponse(content=content)
async def chat_gpt_stream_fun(content: Text = None):
start_time = time.time()
obj = json.loads(content.content)
response = openai.ChatCompletion.create(
model='gpt-3.5-turbo',
messages=obj['messages'],
stream=True, # this time, we set stream=True
)
# create variables to collect the stream of chunks
collected_chunks = []
collected_messages = []
# iterate through the stream of events
for chunk in response:
chunk_time = time.time() - start_time # calculate the time delay of the chunk
collected_chunks.append(chunk) # save the event response
chunk_message = chunk['choices'][0]['delta'] # extract the message
collected_messages.append(chunk_message) # save the message
print(f"Message received {chunk_time:.2f} seconds after request: {chunk_message}") # print the delay and text
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
print(f"Full conversation received: {full_reply_content}")
content = {'content': full_reply_content}
print('content:', content)
yield json.dumps(content) + '\n'
@app.post("/chatgptstream", status_code=status.HTTP_200_OK)
async def get_random_numbers(content: Text = None):
return StreamingResponse(chat_gpt_stream_fun(content), media_type='application/json')
@app.post("/embeddings")
def embeddings_ep(content: Text = None):
url = 'https://api.openai.com/v1/embeddings'
data = {
"model": "text-embedding-ada-002",
"input": content.content
}
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
return JSONResponse(content=result.json())
@app.post("/create_image")
def create_image_ep(content: Text = None):
url = 'https://api.openai.com/v1/images/generations'
obj = json.loads(content.content)
data = {
"prompt": obj["prompt"],
"n": obj["n"],
"size": obj["size"]
}
print("data = \n", data)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
return JSONResponse(content=result.json())