my_api / app.py
souljoy's picture
Update app.py
940b171
raw
history blame
4.32 kB
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from pydantic import BaseModel
from fastapi.responses import JSONResponse
import requests
import json
class Text(BaseModel):
content: str = ""
app = FastAPI()
headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + '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'
}
@app.get("/")
def home():
html_content = open('index.html').read()
return HTMLResponse(content=html_content, status_code=200)
@app.post("/qa_maker")
def sentiment_analysis_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
prompt = '根据下面的文章,生成的“问题和回答”QA对,大于5个,以一行一个json格式({“question”:"xxx","answer":"xxx"})生成:\n'
messages = [{"role": "user", "content": prompt + content.content}]
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
print('res:', res)
res = {'content': res}
return JSONResponse(content=res)
@app.post("/chatpdf")
def chat_pdf_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
messages = [
{
"role": "system",
"content": "你是一个有用的助手,可以使用文章内容准确地回答问题。使用提供的文章来生成你的答案,但避免逐字复制文章。尽可能使用自己的话。准确、有用、简洁、清晰。"
}
]
obj = json.loads(content.content)
messages.append({"role": "system", "content": "文章内容:\n" + obj['doc']})
history = obj['history']
for his in history:
messages.append({"role": "user", "content": his[0]})
messages.append({"role": "assistant", "content": his[1]})
messages.append({"role": "user", "content": obj['question']})
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
content = {'content': res}
print('content:', content)
return JSONResponse(content=content)
@app.post("/sale")
def sale_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
messages = [
{
"role": "system",
"content": "你是小鹏汽车资深的销售,可以参考文章内容来生成你的答案,但避免逐字复制文章,尽可能使用自己的话,突出小鹏汽车的优点、有销售技巧、说服用户来店试驾或购买小鹏汽车。准确、有用、简洁、清晰、礼貌、友善。"
}
]
obj = json.loads(content.content)
messages.append({"role": "system", "content": "文章内容:\n" + obj['doc']})
history = obj['history']
for his in history:
messages.append({"role": "user", "content": his[0]})
messages.append({"role": "assistant", "content": his[1]})
messages.append({"role": "user", "content": obj['question']})
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
content = {'content': res}
print('content:', content)
return JSONResponse(content=content)
@app.post("/embeddings")
def embeddings_ep(content: Text = None):
url = 'https://api.openai.com/v1/embeddings'
data = {
"model": "text-embedding-ada-002",
"input": content.content
}
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
return JSONResponse(content=result.json())