File size: 7,281 Bytes
1809ff7 d057bd6 ad8b9b4 85b90d6 1809ff7 04cf10d ad8b9b4 85b90d6 1809ff7 85b90d6 1809ff7 85b90d6 ad8b9b4 04cf10d 85b90d6 18ed61d c995ecb 18ed61d 2f6c159 18ed61d 2f6c159 f68cd88 e0e4bcd f68cd88 e0e4bcd f68cd88 2f6c159 591d872 2f6c159 bb75b27 5df5961 18ed61d 85b90d6 04cf10d 5df5961 be57dbe 5df5961 04cf10d 85b90d6 04cf10d e5d3b96 04cf10d bb75b27 e83b077 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from pydantic import BaseModel
from fastapi.responses import JSONResponse
import requests
import json
class Text(BaseModel):
content: str = ""
app = FastAPI()
headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + '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'
}
@app.get("/")
def home():
html_content = open('index.html').read()
return HTMLResponse(content=html_content, status_code=200)
@app.post("/qa_maker")
def sentiment_analysis_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
prompt = '根据下面的文章,生成的“问题和回答”QA对,大于5个,以一行一个json格式({“question”:"xxx","answer":"xxx"})生成:\n'
messages = [{"role": "user", "content": prompt + content.content}]
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
print('res:', res)
res = {'content': res}
return JSONResponse(content=res)
@app.post("/chatpdf")
def chat_pdf_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
messages = [
{
"role": "system",
"content": "你是一个有用的助手,可以使用文章内容准确地回答问题。使用提供的文章来生成你的答案,但避免逐字复制文章。尽可能使用自己的话。准确、有用、简洁、清晰。"
}
]
obj = json.loads(content.content)
messages.append({"role": "system", "content": "文章内容:\n" + obj['doc']})
history = obj['history']
for his in history:
messages.append({"role": "user", "content": his[0]})
messages.append({"role": "assistant", "content": his[1]})
messages.append({"role": "user", "content": obj['question']})
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
content = {'content': res}
print('content:', content)
return JSONResponse(content=content)
@app.post("/dic")
def dic_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
messages = [
{
"role": "system",
"content": "你是小鹏汽车数据智能中心(简称DIC)的IT服务台的智能助手"
+ "根据提供的参考文章,生成文本来回答问题。答案包含参考文章内容中HTML样式的图片、网址、超链接。准确、有用、清晰。"
+ "模仿提供的参考对话来有用的回复用户,进行多轮对话。"
+ "根据参考文章和参考对话来回答用户的IT类问题,无法回答非IT类问题。"
+ "你是一个对话机器人,无法提供对话之外的服务(如远程协助、到现场解决故障等)。用户有对话之外服务的需求,请回复他:正在转人工。"
}
]
obj = json.loads(content.content)
if 'ref_doc' in obj:
messages.append({"role": "system", "content": "参考文章:\n" + obj['ref_doc']})
if 'ref_dialog' in obj:
messages.append({"role": "system", "content": "参考对话:\n" + obj['ref_dialog']})
history = obj['history']
for his in history:
messages.append({"role": "user", "content": his[0]})
messages.append({"role": "assistant", "content": his[1]})
messages.append({"role": "user", "content": obj['question']})
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
content = {'content': res}
print('content:', content)
return JSONResponse(content=content)
@app.post("/sale")
def sale_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
messages = [
{
"role": "system",
"content": "你是小鹏汽车资深的销售,可以参考文章内容来生成你的答案,但避免逐字复制文章,尽可能使用自己的话,突出小鹏汽车的优点、说服用户来店试驾或购买小鹏汽车。准确、有用、有销售技巧、口语化、有亲和力。"
}
]
obj = json.loads(content.content)
messages.append({"role": "system", "content": "文章内容:\n" + obj['doc']})
history = obj['history']
for his in history:
messages.append({"role": "user", "content": his[0]})
messages.append({"role": "assistant", "content": his[1]})
messages.append({"role": "user", "content": obj['question']})
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
content = {'content': res}
print('content:', content)
return JSONResponse(content=content)
@app.post("/chat_gpt")
def chat_gpt_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
obj = json.loads(content.content)
data = {
"model": "gpt-3.5-turbo",
"messages": obj['messages']
}
print("data = \n", data)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
content = {'content': res}
print('content:', content)
return JSONResponse(content=content)
@app.post("/embeddings")
def embeddings_ep(content: Text = None):
url = 'https://api.openai.com/v1/embeddings'
data = {
"model": "text-embedding-ada-002",
"input": content.content
}
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
return JSONResponse(content=result.json())
@app.post("/create_image")
def create_image_ep(content: Text = None):
url = 'https://api.openai.com/v1/images/generations'
obj = json.loads(content.content)
data = {
"prompt": obj["prompt"],
"n": obj["n"],
"size": obj["size"]
}
print("data = \n", data)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
return JSONResponse(content=result.json())
|