File size: 2,946 Bytes
1809ff7 d057bd6 ad8b9b4 85b90d6 1809ff7 04cf10d ad8b9b4 85b90d6 1809ff7 85b90d6 1809ff7 85b90d6 ad8b9b4 04cf10d 85b90d6 18ed61d c995ecb 18ed61d bb75b27 18ed61d 85b90d6 04cf10d 85b90d6 04cf10d e5d3b96 04cf10d bb75b27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from pydantic import BaseModel
from fastapi.responses import JSONResponse
import requests
import json
class Text(BaseModel):
content: str = ""
app = FastAPI()
headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + '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'
}
@app.get("/")
def home():
html_content = open('index.html').read()
return HTMLResponse(content=html_content, status_code=200)
@app.post("/qa_maker")
def sentiment_analysis_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
prompt = '根据下面的文章,生成的“问题和回答”QA对,大于5个,以一行一个json格式({“question”:"xxx","answer":"xxx"})生成:\n'
messages = [{"role": "user", "content": prompt + content.content}]
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
print('res:', res)
res = {'content': res}
return JSONResponse(content=res)
@app.post("/chatpdf")
def chat_pdf_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
messages = [
{
"role": "system",
"content": "你是一个有用的助手,可以使用文章内容准确地回答问题。使用提供的文章来形成你的答案,但避免逐字复制文章。尽可能使用自己的话。准确、有用、简洁、清晰。"
}
]
obj = json.loads(content.content)
history = obj['history']
for his in history:
messages.append({"role": "user", "content": his[0]})
messages.append({"role": "assistant", "content": his[1]})
messages.append({"role": "user", "content": obj['question'] + '\n根据以下文章回答:\n' + obj['doc']})
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
print('res:', res)
res = {'content': res}
return JSONResponse(content=res)
@app.post("/embeddings")
def embeddings_ep(content: Text = None):
url = 'https://api.openai.com/v1/embeddings'
data = {
"model": "text-embedding-ada-002",
"input": content.content
}
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
return JSONResponse(content=result.json())
|